Solve for x
x = -\frac{24}{5} = -4\frac{4}{5} = -4.8
Graph
Share
Copied to clipboard
\frac{1}{4}\left(2-3x-6\right)=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Use the distributive property to multiply -3 by x+2.
\frac{1}{4}\left(-4-3x\right)=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Subtract 6 from 2 to get -4.
\frac{1}{4}\left(-4\right)+\frac{1}{4}\left(-3\right)x=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Use the distributive property to multiply \frac{1}{4} by -4-3x.
\frac{-4}{4}+\frac{1}{4}\left(-3\right)x=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Multiply \frac{1}{4} and -4 to get \frac{-4}{4}.
-1+\frac{1}{4}\left(-3\right)x=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Divide -4 by 4 to get -1.
-1+\frac{-3}{4}x=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Multiply \frac{1}{4} and -3 to get \frac{-3}{4}.
-1-\frac{3}{4}x=\frac{1}{5}\left(-3x+1+\frac{1}{2}x\right)
Fraction \frac{-3}{4} can be rewritten as -\frac{3}{4} by extracting the negative sign.
-1-\frac{3}{4}x=\frac{1}{5}\left(-\frac{5}{2}x+1\right)
Combine -3x and \frac{1}{2}x to get -\frac{5}{2}x.
-1-\frac{3}{4}x=\frac{1}{5}\left(-\frac{5}{2}\right)x+\frac{1}{5}
Use the distributive property to multiply \frac{1}{5} by -\frac{5}{2}x+1.
-1-\frac{3}{4}x=\frac{1\left(-5\right)}{5\times 2}x+\frac{1}{5}
Multiply \frac{1}{5} times -\frac{5}{2} by multiplying numerator times numerator and denominator times denominator.
-1-\frac{3}{4}x=\frac{-5}{10}x+\frac{1}{5}
Do the multiplications in the fraction \frac{1\left(-5\right)}{5\times 2}.
-1-\frac{3}{4}x=-\frac{1}{2}x+\frac{1}{5}
Reduce the fraction \frac{-5}{10} to lowest terms by extracting and canceling out 5.
-1-\frac{3}{4}x+\frac{1}{2}x=\frac{1}{5}
Add \frac{1}{2}x to both sides.
-1-\frac{1}{4}x=\frac{1}{5}
Combine -\frac{3}{4}x and \frac{1}{2}x to get -\frac{1}{4}x.
-\frac{1}{4}x=\frac{1}{5}+1
Add 1 to both sides.
-\frac{1}{4}x=\frac{1}{5}+\frac{5}{5}
Convert 1 to fraction \frac{5}{5}.
-\frac{1}{4}x=\frac{1+5}{5}
Since \frac{1}{5} and \frac{5}{5} have the same denominator, add them by adding their numerators.
-\frac{1}{4}x=\frac{6}{5}
Add 1 and 5 to get 6.
x=\frac{6}{5}\left(-4\right)
Multiply both sides by -4, the reciprocal of -\frac{1}{4}.
x=\frac{6\left(-4\right)}{5}
Express \frac{6}{5}\left(-4\right) as a single fraction.
x=\frac{-24}{5}
Multiply 6 and -4 to get -24.
x=-\frac{24}{5}
Fraction \frac{-24}{5} can be rewritten as -\frac{24}{5} by extracting the negative sign.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}