Solve for k
k = \frac{\sqrt{15}}{2} \approx 1.936491673
k = -\frac{\sqrt{15}}{2} \approx -1.936491673
Share
Copied to clipboard
\frac{1}{4}=2^{2}\left(\sqrt{1-\frac{k^{2}}{4}}\right)^{2}
Expand \left(2\sqrt{1-\frac{k^{2}}{4}}\right)^{2}.
\frac{1}{4}=4\left(\sqrt{1-\frac{k^{2}}{4}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
\frac{1}{4}=4\left(1-\frac{k^{2}}{4}\right)
Calculate \sqrt{1-\frac{k^{2}}{4}} to the power of 2 and get 1-\frac{k^{2}}{4}.
\frac{1}{4}=4+4\left(-\frac{k^{2}}{4}\right)
Use the distributive property to multiply 4 by 1-\frac{k^{2}}{4}.
\frac{1}{4}=4+\frac{-4k^{2}}{4}
Express 4\left(-\frac{k^{2}}{4}\right) as a single fraction.
\frac{1}{4}=4-k^{2}
Cancel out 4 and 4.
4-k^{2}=\frac{1}{4}
Swap sides so that all variable terms are on the left hand side.
-k^{2}=\frac{1}{4}-4
Subtract 4 from both sides.
-k^{2}=-\frac{15}{4}
Subtract 4 from \frac{1}{4} to get -\frac{15}{4}.
k^{2}=\frac{-\frac{15}{4}}{-1}
Divide both sides by -1.
k^{2}=\frac{-15}{4\left(-1\right)}
Express \frac{-\frac{15}{4}}{-1} as a single fraction.
k^{2}=\frac{-15}{-4}
Multiply 4 and -1 to get -4.
k^{2}=\frac{15}{4}
Fraction \frac{-15}{-4} can be simplified to \frac{15}{4} by removing the negative sign from both the numerator and the denominator.
k=\frac{\sqrt{15}}{2} k=-\frac{\sqrt{15}}{2}
Take the square root of both sides of the equation.
\frac{1}{4}=2^{2}\left(\sqrt{1-\frac{k^{2}}{4}}\right)^{2}
Expand \left(2\sqrt{1-\frac{k^{2}}{4}}\right)^{2}.
\frac{1}{4}=4\left(\sqrt{1-\frac{k^{2}}{4}}\right)^{2}
Calculate 2 to the power of 2 and get 4.
\frac{1}{4}=4\left(1-\frac{k^{2}}{4}\right)
Calculate \sqrt{1-\frac{k^{2}}{4}} to the power of 2 and get 1-\frac{k^{2}}{4}.
\frac{1}{4}=4+4\left(-\frac{k^{2}}{4}\right)
Use the distributive property to multiply 4 by 1-\frac{k^{2}}{4}.
\frac{1}{4}=4+\frac{-4k^{2}}{4}
Express 4\left(-\frac{k^{2}}{4}\right) as a single fraction.
\frac{1}{4}=4-k^{2}
Cancel out 4 and 4.
4-k^{2}=\frac{1}{4}
Swap sides so that all variable terms are on the left hand side.
4-k^{2}-\frac{1}{4}=0
Subtract \frac{1}{4} from both sides.
\frac{15}{4}-k^{2}=0
Subtract \frac{1}{4} from 4 to get \frac{15}{4}.
-k^{2}+\frac{15}{4}=0
Quadratic equations like this one, with an x^{2} term but no x term, can still be solved using the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}, once they are put in standard form: ax^{2}+bx+c=0.
k=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times \frac{15}{4}}}{2\left(-1\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -1 for a, 0 for b, and \frac{15}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{0±\sqrt{-4\left(-1\right)\times \frac{15}{4}}}{2\left(-1\right)}
Square 0.
k=\frac{0±\sqrt{4\times \frac{15}{4}}}{2\left(-1\right)}
Multiply -4 times -1.
k=\frac{0±\sqrt{15}}{2\left(-1\right)}
Multiply 4 times \frac{15}{4}.
k=\frac{0±\sqrt{15}}{-2}
Multiply 2 times -1.
k=-\frac{\sqrt{15}}{2}
Now solve the equation k=\frac{0±\sqrt{15}}{-2} when ± is plus.
k=\frac{\sqrt{15}}{2}
Now solve the equation k=\frac{0±\sqrt{15}}{-2} when ± is minus.
k=-\frac{\sqrt{15}}{2} k=\frac{\sqrt{15}}{2}
The equation is now solved.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}