Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

\left(k-8\right)^{2}=4\left(\left(2k+2\right)^{2}-\left(8-k\right)\right)
Variable k cannot be equal to 8 since division by zero is not defined. Multiply both sides of the equation by 4\left(k-8\right)^{2}, the least common multiple of 4,\left(8-k\right)^{2}.
k^{2}-16k+64=4\left(\left(2k+2\right)^{2}-\left(8-k\right)\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(k-8\right)^{2}.
k^{2}-16k+64=4\left(4k^{2}+8k+4-\left(8-k\right)\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2k+2\right)^{2}.
k^{2}-16k+64=4\left(4k^{2}+8k+4-8+k\right)
To find the opposite of 8-k, find the opposite of each term.
k^{2}-16k+64=4\left(4k^{2}+8k-4+k\right)
Subtract 8 from 4 to get -4.
k^{2}-16k+64=4\left(4k^{2}+9k-4\right)
Combine 8k and k to get 9k.
k^{2}-16k+64=16k^{2}+36k-16
Use the distributive property to multiply 4 by 4k^{2}+9k-4.
k^{2}-16k+64-16k^{2}=36k-16
Subtract 16k^{2} from both sides.
-15k^{2}-16k+64=36k-16
Combine k^{2} and -16k^{2} to get -15k^{2}.
-15k^{2}-16k+64-36k=-16
Subtract 36k from both sides.
-15k^{2}-52k+64=-16
Combine -16k and -36k to get -52k.
-15k^{2}-52k+64+16=0
Add 16 to both sides.
-15k^{2}-52k+80=0
Add 64 and 16 to get 80.
k=\frac{-\left(-52\right)±\sqrt{\left(-52\right)^{2}-4\left(-15\right)\times 80}}{2\left(-15\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -15 for a, -52 for b, and 80 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-52\right)±\sqrt{2704-4\left(-15\right)\times 80}}{2\left(-15\right)}
Square -52.
k=\frac{-\left(-52\right)±\sqrt{2704+60\times 80}}{2\left(-15\right)}
Multiply -4 times -15.
k=\frac{-\left(-52\right)±\sqrt{2704+4800}}{2\left(-15\right)}
Multiply 60 times 80.
k=\frac{-\left(-52\right)±\sqrt{7504}}{2\left(-15\right)}
Add 2704 to 4800.
k=\frac{-\left(-52\right)±4\sqrt{469}}{2\left(-15\right)}
Take the square root of 7504.
k=\frac{52±4\sqrt{469}}{2\left(-15\right)}
The opposite of -52 is 52.
k=\frac{52±4\sqrt{469}}{-30}
Multiply 2 times -15.
k=\frac{4\sqrt{469}+52}{-30}
Now solve the equation k=\frac{52±4\sqrt{469}}{-30} when ± is plus. Add 52 to 4\sqrt{469}.
k=\frac{-2\sqrt{469}-26}{15}
Divide 52+4\sqrt{469} by -30.
k=\frac{52-4\sqrt{469}}{-30}
Now solve the equation k=\frac{52±4\sqrt{469}}{-30} when ± is minus. Subtract 4\sqrt{469} from 52.
k=\frac{2\sqrt{469}-26}{15}
Divide 52-4\sqrt{469} by -30.
k=\frac{-2\sqrt{469}-26}{15} k=\frac{2\sqrt{469}-26}{15}
The equation is now solved.
\left(k-8\right)^{2}=4\left(\left(2k+2\right)^{2}-\left(8-k\right)\right)
Variable k cannot be equal to 8 since division by zero is not defined. Multiply both sides of the equation by 4\left(k-8\right)^{2}, the least common multiple of 4,\left(8-k\right)^{2}.
k^{2}-16k+64=4\left(\left(2k+2\right)^{2}-\left(8-k\right)\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(k-8\right)^{2}.
k^{2}-16k+64=4\left(4k^{2}+8k+4-\left(8-k\right)\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2k+2\right)^{2}.
k^{2}-16k+64=4\left(4k^{2}+8k+4-8+k\right)
To find the opposite of 8-k, find the opposite of each term.
k^{2}-16k+64=4\left(4k^{2}+8k-4+k\right)
Subtract 8 from 4 to get -4.
k^{2}-16k+64=4\left(4k^{2}+9k-4\right)
Combine 8k and k to get 9k.
k^{2}-16k+64=16k^{2}+36k-16
Use the distributive property to multiply 4 by 4k^{2}+9k-4.
k^{2}-16k+64-16k^{2}=36k-16
Subtract 16k^{2} from both sides.
-15k^{2}-16k+64=36k-16
Combine k^{2} and -16k^{2} to get -15k^{2}.
-15k^{2}-16k+64-36k=-16
Subtract 36k from both sides.
-15k^{2}-52k+64=-16
Combine -16k and -36k to get -52k.
-15k^{2}-52k=-16-64
Subtract 64 from both sides.
-15k^{2}-52k=-80
Subtract 64 from -16 to get -80.
\frac{-15k^{2}-52k}{-15}=-\frac{80}{-15}
Divide both sides by -15.
k^{2}+\left(-\frac{52}{-15}\right)k=-\frac{80}{-15}
Dividing by -15 undoes the multiplication by -15.
k^{2}+\frac{52}{15}k=-\frac{80}{-15}
Divide -52 by -15.
k^{2}+\frac{52}{15}k=\frac{16}{3}
Reduce the fraction \frac{-80}{-15} to lowest terms by extracting and canceling out 5.
k^{2}+\frac{52}{15}k+\left(\frac{26}{15}\right)^{2}=\frac{16}{3}+\left(\frac{26}{15}\right)^{2}
Divide \frac{52}{15}, the coefficient of the x term, by 2 to get \frac{26}{15}. Then add the square of \frac{26}{15} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+\frac{52}{15}k+\frac{676}{225}=\frac{16}{3}+\frac{676}{225}
Square \frac{26}{15} by squaring both the numerator and the denominator of the fraction.
k^{2}+\frac{52}{15}k+\frac{676}{225}=\frac{1876}{225}
Add \frac{16}{3} to \frac{676}{225} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(k+\frac{26}{15}\right)^{2}=\frac{1876}{225}
Factor k^{2}+\frac{52}{15}k+\frac{676}{225}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{26}{15}\right)^{2}}=\sqrt{\frac{1876}{225}}
Take the square root of both sides of the equation.
k+\frac{26}{15}=\frac{2\sqrt{469}}{15} k+\frac{26}{15}=-\frac{2\sqrt{469}}{15}
Simplify.
k=\frac{2\sqrt{469}-26}{15} k=\frac{-2\sqrt{469}-26}{15}
Subtract \frac{26}{15} from both sides of the equation.