Skip to main content
Solve for x
Tick mark Image
Solve for k (complex solution)
Tick mark Image
Solve for k
Tick mark Image
Graph

Similar Problems from Web Search

Share

\left(k-8\right)^{2}=4\left(\left(2k+2\right)^{2}-\left(1-x\right)\right)
Multiply both sides of the equation by 4\left(k-8\right)^{2}, the least common multiple of 4,\left(8-k\right)^{2}.
k^{2}-16k+64=4\left(\left(2k+2\right)^{2}-\left(1-x\right)\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(k-8\right)^{2}.
k^{2}-16k+64=4\left(4k^{2}+8k+4-\left(1-x\right)\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2k+2\right)^{2}.
k^{2}-16k+64=4\left(4k^{2}+8k+4-1+x\right)
To find the opposite of 1-x, find the opposite of each term.
k^{2}-16k+64=4\left(4k^{2}+8k+3+x\right)
Subtract 1 from 4 to get 3.
k^{2}-16k+64=16k^{2}+32k+12+4x
Use the distributive property to multiply 4 by 4k^{2}+8k+3+x.
16k^{2}+32k+12+4x=k^{2}-16k+64
Swap sides so that all variable terms are on the left hand side.
32k+12+4x=k^{2}-16k+64-16k^{2}
Subtract 16k^{2} from both sides.
32k+12+4x=-15k^{2}-16k+64
Combine k^{2} and -16k^{2} to get -15k^{2}.
12+4x=-15k^{2}-16k+64-32k
Subtract 32k from both sides.
12+4x=-15k^{2}-48k+64
Combine -16k and -32k to get -48k.
4x=-15k^{2}-48k+64-12
Subtract 12 from both sides.
4x=-15k^{2}-48k+52
Subtract 12 from 64 to get 52.
4x=52-48k-15k^{2}
The equation is in standard form.
\frac{4x}{4}=\frac{52-48k-15k^{2}}{4}
Divide both sides by 4.
x=\frac{52-48k-15k^{2}}{4}
Dividing by 4 undoes the multiplication by 4.
x=-\frac{15k^{2}}{4}-12k+13
Divide -15k^{2}-48k+52 by 4.