Solve for x
x=-\frac{15k^{2}}{4}-12k+13
k\neq 8
Solve for k (complex solution)
\left\{\begin{matrix}\\k=-\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&\text{unconditionally}\\k=\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&x\neq -323\end{matrix}\right.
Solve for k
\left\{\begin{matrix}k=\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&x\neq -323\text{ and }x\leq \frac{113}{5}\\k=-\frac{2\sqrt{339-15x}}{15}-\frac{8}{5}\text{, }&x\leq \frac{113}{5}\end{matrix}\right.
Graph
Share
Copied to clipboard
\left(k-8\right)^{2}=4\left(\left(2k+2\right)^{2}-\left(1-x\right)\right)
Multiply both sides of the equation by 4\left(k-8\right)^{2}, the least common multiple of 4,\left(8-k\right)^{2}.
k^{2}-16k+64=4\left(\left(2k+2\right)^{2}-\left(1-x\right)\right)
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(k-8\right)^{2}.
k^{2}-16k+64=4\left(4k^{2}+8k+4-\left(1-x\right)\right)
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(2k+2\right)^{2}.
k^{2}-16k+64=4\left(4k^{2}+8k+4-1+x\right)
To find the opposite of 1-x, find the opposite of each term.
k^{2}-16k+64=4\left(4k^{2}+8k+3+x\right)
Subtract 1 from 4 to get 3.
k^{2}-16k+64=16k^{2}+32k+12+4x
Use the distributive property to multiply 4 by 4k^{2}+8k+3+x.
16k^{2}+32k+12+4x=k^{2}-16k+64
Swap sides so that all variable terms are on the left hand side.
32k+12+4x=k^{2}-16k+64-16k^{2}
Subtract 16k^{2} from both sides.
32k+12+4x=-15k^{2}-16k+64
Combine k^{2} and -16k^{2} to get -15k^{2}.
12+4x=-15k^{2}-16k+64-32k
Subtract 32k from both sides.
12+4x=-15k^{2}-48k+64
Combine -16k and -32k to get -48k.
4x=-15k^{2}-48k+64-12
Subtract 12 from both sides.
4x=-15k^{2}-48k+52
Subtract 12 from 64 to get 52.
4x=52-48k-15k^{2}
The equation is in standard form.
\frac{4x}{4}=\frac{52-48k-15k^{2}}{4}
Divide both sides by 4.
x=\frac{52-48k-15k^{2}}{4}
Dividing by 4 undoes the multiplication by 4.
x=-\frac{15k^{2}}{4}-12k+13
Divide -15k^{2}-48k+52 by 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}