Evaluate
\frac{2\sqrt{3}}{3}-\frac{13}{12}\approx 0.071367205
Factor
\frac{8 \sqrt{3} - 13}{12} = 0.07136720504591813
Share
Copied to clipboard
\frac{1}{4}+\frac{2}{3}\left(\left(\frac{\sqrt{3}+2}{-2}\right)^{2}+2\sqrt[3]{27}\right)-\frac{\frac{3}{5}+2}{1-\frac{3}{5}}
Calculate the square root of 4 and get 2.
\frac{1}{4}+\frac{2}{3}\left(\left(\frac{-\sqrt{3}-2}{2}\right)^{2}+2\sqrt[3]{27}\right)-\frac{\frac{3}{5}+2}{1-\frac{3}{5}}
Multiply both numerator and denominator by -1.
\frac{1}{4}+\frac{2}{3}\left(\frac{\left(-\sqrt{3}-2\right)^{2}}{2^{2}}+2\sqrt[3]{27}\right)-\frac{\frac{3}{5}+2}{1-\frac{3}{5}}
To raise \frac{-\sqrt{3}-2}{2} to a power, raise both numerator and denominator to the power and then divide.
\frac{1}{4}+\frac{2}{3}\left(\frac{\left(-\sqrt{3}-2\right)^{2}}{2^{2}}+2\times 3\right)-\frac{\frac{3}{5}+2}{1-\frac{3}{5}}
Calculate \sqrt[3]{27} and get 3.
\frac{1}{4}+\frac{2}{3}\left(\frac{\left(-\sqrt{3}-2\right)^{2}}{2^{2}}+6\right)-\frac{\frac{3}{5}+2}{1-\frac{3}{5}}
Multiply 2 and 3 to get 6.
\frac{1}{4}+\frac{2}{3}\left(\frac{\left(-\sqrt{3}-2\right)^{2}}{2^{2}}+\frac{6\times 2^{2}}{2^{2}}\right)-\frac{\frac{3}{5}+2}{1-\frac{3}{5}}
To add or subtract expressions, expand them to make their denominators the same. Multiply 6 times \frac{2^{2}}{2^{2}}.
\frac{1}{4}+\frac{2}{3}\times \frac{\left(-\sqrt{3}-2\right)^{2}+6\times 2^{2}}{2^{2}}-\frac{\frac{3}{5}+2}{1-\frac{3}{5}}
Since \frac{\left(-\sqrt{3}-2\right)^{2}}{2^{2}} and \frac{6\times 2^{2}}{2^{2}} have the same denominator, add them by adding their numerators.
\frac{1}{4}+\frac{2\left(\left(-\sqrt{3}-2\right)^{2}+6\times 2^{2}\right)}{3\times 2^{2}}-\frac{\frac{3}{5}+2}{1-\frac{3}{5}}
Multiply \frac{2}{3} times \frac{\left(-\sqrt{3}-2\right)^{2}+6\times 2^{2}}{2^{2}} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{4}+\frac{\left(-\sqrt{3}-2\right)^{2}+6\times 2^{2}}{2\times 3}-\frac{\frac{3}{5}+2}{1-\frac{3}{5}}
Cancel out 2 in both numerator and denominator.
\frac{1}{4}+\frac{\left(-\sqrt{3}-2\right)^{2}+6\times 2^{2}}{2\times 3}-\frac{\frac{13}{5}}{1-\frac{3}{5}}
Add \frac{3}{5} and 2 to get \frac{13}{5}.
\frac{1}{4}+\frac{\left(-\sqrt{3}-2\right)^{2}+6\times 2^{2}}{2\times 3}-\frac{\frac{13}{5}}{\frac{2}{5}}
Subtract \frac{3}{5} from 1 to get \frac{2}{5}.
\frac{1}{4}+\frac{\left(-\sqrt{3}-2\right)^{2}+6\times 2^{2}}{2\times 3}-\frac{13}{5}\times \frac{5}{2}
Divide \frac{13}{5} by \frac{2}{5} by multiplying \frac{13}{5} by the reciprocal of \frac{2}{5}.
\frac{1}{4}+\frac{\left(-\sqrt{3}-2\right)^{2}+6\times 2^{2}}{2\times 3}-\frac{13}{2}
Multiply \frac{13}{5} and \frac{5}{2} to get \frac{13}{2}.
-\frac{25}{4}+\frac{\left(-\sqrt{3}-2\right)^{2}+6\times 2^{2}}{2\times 3}
Subtract \frac{13}{2} from \frac{1}{4} to get -\frac{25}{4}.
-\frac{25}{4}+\frac{\left(\sqrt{3}\right)^{2}+4\sqrt{3}+4+6\times 2^{2}}{2\times 3}
Use binomial theorem \left(a-b\right)^{2}=a^{2}-2ab+b^{2} to expand \left(-\sqrt{3}-2\right)^{2}.
-\frac{25}{4}+\frac{3+4\sqrt{3}+4+6\times 2^{2}}{2\times 3}
The square of \sqrt{3} is 3.
-\frac{25}{4}+\frac{7+4\sqrt{3}+6\times 2^{2}}{2\times 3}
Add 3 and 4 to get 7.
-\frac{25}{4}+\frac{7+4\sqrt{3}+6\times 4}{2\times 3}
Calculate 2 to the power of 2 and get 4.
-\frac{25}{4}+\frac{7+4\sqrt{3}+24}{2\times 3}
Multiply 6 and 4 to get 24.
-\frac{25}{4}+\frac{31+4\sqrt{3}}{2\times 3}
Add 7 and 24 to get 31.
-\frac{25}{4}+\frac{31+4\sqrt{3}}{6}
Multiply 2 and 3 to get 6.
-\frac{25\times 3}{12}+\frac{2\left(31+4\sqrt{3}\right)}{12}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 4 and 6 is 12. Multiply -\frac{25}{4} times \frac{3}{3}. Multiply \frac{31+4\sqrt{3}}{6} times \frac{2}{2}.
\frac{-25\times 3+2\left(31+4\sqrt{3}\right)}{12}
Since -\frac{25\times 3}{12} and \frac{2\left(31+4\sqrt{3}\right)}{12} have the same denominator, add them by adding their numerators.
\frac{-75+62+8\sqrt{3}}{12}
Do the multiplications in -25\times 3+2\left(31+4\sqrt{3}\right).
\frac{-13+8\sqrt{3}}{12}
Do the calculations in -75+62+8\sqrt{3}.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}