Evaluate
\frac{6182648896370875625}{20516264550379810692}\approx 0.301353537
Factor
\frac{79 \cdot 6277 \cdot 19948734347 \cdot 5 ^ {4}}{43 \cdot 59 \cdot 3656111 \cdot 61440671 \cdot 2 ^ {2} \cdot 3 ^ {2}} = 0.3013535373941363
Share
Copied to clipboard
\frac{1}{4 \cdot 3.14 \cdot 8.85} \cdot \frac{79 \cdot 1.6 ^ {2}}{7.68 \cdot 1.6} \cdot {(1 + \frac{1}{0.9659258262890683})}
Evaluate trigonometric functions in the problem
\frac{1}{12.56\times 8.85}\times \frac{79\times 1.6^{2}}{7.68\times 1.6}\left(1+\frac{1}{0.9659258262890683}\right)
Multiply 4 and 3.14 to get 12.56.
\frac{1}{111.156}\times \frac{79\times 1.6^{2}}{7.68\times 1.6}\left(1+\frac{1}{0.9659258262890683}\right)
Multiply 12.56 and 8.85 to get 111.156.
\frac{1000}{111156}\times \frac{79\times 1.6^{2}}{7.68\times 1.6}\left(1+\frac{1}{0.9659258262890683}\right)
Expand \frac{1}{111.156} by multiplying both numerator and the denominator by 1000.
\frac{250}{27789}\times \frac{79\times 1.6^{2}}{7.68\times 1.6}\left(1+\frac{1}{0.9659258262890683}\right)
Reduce the fraction \frac{1000}{111156} to lowest terms by extracting and canceling out 4.
\frac{250}{27789}\times \frac{1.6\times 79}{7.68}\left(1+\frac{1}{0.9659258262890683}\right)
Cancel out 1.6 in both numerator and denominator.
\frac{250}{27789}\times \frac{126.4}{7.68}\left(1+\frac{1}{0.9659258262890683}\right)
Multiply 1.6 and 79 to get 126.4.
\frac{250}{27789}\times \frac{12640}{768}\left(1+\frac{1}{0.9659258262890683}\right)
Expand \frac{126.4}{7.68} by multiplying both numerator and the denominator by 100.
\frac{250}{27789}\times \frac{395}{24}\left(1+\frac{1}{0.9659258262890683}\right)
Reduce the fraction \frac{12640}{768} to lowest terms by extracting and canceling out 32.
\frac{250\times 395}{27789\times 24}\left(1+\frac{1}{0.9659258262890683}\right)
Multiply \frac{250}{27789} times \frac{395}{24} by multiplying numerator times numerator and denominator times denominator.
\frac{98750}{666936}\left(1+\frac{1}{0.9659258262890683}\right)
Do the multiplications in the fraction \frac{250\times 395}{27789\times 24}.
\frac{49375}{333468}\left(1+\frac{1}{0.9659258262890683}\right)
Reduce the fraction \frac{98750}{666936} to lowest terms by extracting and canceling out 2.
\frac{49375}{333468}\left(1+\frac{10000000000000000}{9659258262890683}\right)
Expand \frac{1}{0.9659258262890683} by multiplying both numerator and the denominator by 10000000000000000.
\frac{49375}{333468}\left(\frac{9659258262890683}{9659258262890683}+\frac{10000000000000000}{9659258262890683}\right)
Convert 1 to fraction \frac{9659258262890683}{9659258262890683}.
\frac{49375}{333468}\times \frac{9659258262890683+10000000000000000}{9659258262890683}
Since \frac{9659258262890683}{9659258262890683} and \frac{10000000000000000}{9659258262890683} have the same denominator, add them by adding their numerators.
\frac{49375}{333468}\times \frac{19659258262890683}{9659258262890683}
Add 9659258262890683 and 10000000000000000 to get 19659258262890683.
\frac{49375\times 19659258262890683}{333468\times 9659258262890683}
Multiply \frac{49375}{333468} times \frac{19659258262890683}{9659258262890683} by multiplying numerator times numerator and denominator times denominator.
\frac{970675876730227473125}{3221053534409630278644}
Do the multiplications in the fraction \frac{49375\times 19659258262890683}{333468\times 9659258262890683}.
\frac{6182648896370875625}{20516264550379810692}
Reduce the fraction \frac{970675876730227473125}{3221053534409630278644} to lowest terms by extracting and canceling out 157.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}