Skip to main content
Evaluate
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{\frac{4}{3}+\frac{21}{3}}+\frac{1}{7-4\sqrt{3}}
Convert 7 to fraction \frac{21}{3}.
\frac{1}{\frac{4+21}{3}}+\frac{1}{7-4\sqrt{3}}
Since \frac{4}{3} and \frac{21}{3} have the same denominator, add them by adding their numerators.
\frac{1}{\frac{25}{3}}+\frac{1}{7-4\sqrt{3}}
Add 4 and 21 to get 25.
1\times \frac{3}{25}+\frac{1}{7-4\sqrt{3}}
Divide 1 by \frac{25}{3} by multiplying 1 by the reciprocal of \frac{25}{3}.
\frac{3}{25}+\frac{1}{7-4\sqrt{3}}
Multiply 1 and \frac{3}{25} to get \frac{3}{25}.
\frac{3}{25}+\frac{7+4\sqrt{3}}{\left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right)}
Rationalize the denominator of \frac{1}{7-4\sqrt{3}} by multiplying numerator and denominator by 7+4\sqrt{3}.
\frac{3}{25}+\frac{7+4\sqrt{3}}{7^{2}-\left(-4\sqrt{3}\right)^{2}}
Consider \left(7-4\sqrt{3}\right)\left(7+4\sqrt{3}\right). Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{3}{25}+\frac{7+4\sqrt{3}}{49-\left(-4\sqrt{3}\right)^{2}}
Calculate 7 to the power of 2 and get 49.
\frac{3}{25}+\frac{7+4\sqrt{3}}{49-\left(-4\right)^{2}\left(\sqrt{3}\right)^{2}}
Expand \left(-4\sqrt{3}\right)^{2}.
\frac{3}{25}+\frac{7+4\sqrt{3}}{49-16\left(\sqrt{3}\right)^{2}}
Calculate -4 to the power of 2 and get 16.
\frac{3}{25}+\frac{7+4\sqrt{3}}{49-16\times 3}
The square of \sqrt{3} is 3.
\frac{3}{25}+\frac{7+4\sqrt{3}}{49-48}
Multiply 16 and 3 to get 48.
\frac{3}{25}+\frac{7+4\sqrt{3}}{1}
Subtract 48 from 49 to get 1.
\frac{3}{25}+7+4\sqrt{3}
Anything divided by one gives itself.
\frac{3}{25}+\frac{175}{25}+4\sqrt{3}
Convert 7 to fraction \frac{175}{25}.
\frac{3+175}{25}+4\sqrt{3}
Since \frac{3}{25} and \frac{175}{25} have the same denominator, add them by adding their numerators.
\frac{178}{25}+4\sqrt{3}
Add 3 and 175 to get 178.