Skip to main content
Solve for k
Tick mark Image

Similar Problems from Web Search

Share

9k^{2}+4=\left(3k+2\right)^{2}\times 25
Variable k cannot be equal to -\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3k+2\right)^{2}\left(9k^{2}+4\right), the least common multiple of 4+9k^{2}+12k,4+9k^{2}.
9k^{2}+4=\left(9k^{2}+12k+4\right)\times 25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3k+2\right)^{2}.
9k^{2}+4=225k^{2}+300k+100
Use the distributive property to multiply 9k^{2}+12k+4 by 25.
9k^{2}+4-225k^{2}=300k+100
Subtract 225k^{2} from both sides.
-216k^{2}+4=300k+100
Combine 9k^{2} and -225k^{2} to get -216k^{2}.
-216k^{2}+4-300k=100
Subtract 300k from both sides.
-216k^{2}+4-300k-100=0
Subtract 100 from both sides.
-216k^{2}-96-300k=0
Subtract 100 from 4 to get -96.
-216k^{2}-300k-96=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
k=\frac{-\left(-300\right)±\sqrt{\left(-300\right)^{2}-4\left(-216\right)\left(-96\right)}}{2\left(-216\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -216 for a, -300 for b, and -96 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
k=\frac{-\left(-300\right)±\sqrt{90000-4\left(-216\right)\left(-96\right)}}{2\left(-216\right)}
Square -300.
k=\frac{-\left(-300\right)±\sqrt{90000+864\left(-96\right)}}{2\left(-216\right)}
Multiply -4 times -216.
k=\frac{-\left(-300\right)±\sqrt{90000-82944}}{2\left(-216\right)}
Multiply 864 times -96.
k=\frac{-\left(-300\right)±\sqrt{7056}}{2\left(-216\right)}
Add 90000 to -82944.
k=\frac{-\left(-300\right)±84}{2\left(-216\right)}
Take the square root of 7056.
k=\frac{300±84}{2\left(-216\right)}
The opposite of -300 is 300.
k=\frac{300±84}{-432}
Multiply 2 times -216.
k=\frac{384}{-432}
Now solve the equation k=\frac{300±84}{-432} when ± is plus. Add 300 to 84.
k=-\frac{8}{9}
Reduce the fraction \frac{384}{-432} to lowest terms by extracting and canceling out 48.
k=\frac{216}{-432}
Now solve the equation k=\frac{300±84}{-432} when ± is minus. Subtract 84 from 300.
k=-\frac{1}{2}
Reduce the fraction \frac{216}{-432} to lowest terms by extracting and canceling out 216.
k=-\frac{8}{9} k=-\frac{1}{2}
The equation is now solved.
9k^{2}+4=\left(3k+2\right)^{2}\times 25
Variable k cannot be equal to -\frac{2}{3} since division by zero is not defined. Multiply both sides of the equation by \left(3k+2\right)^{2}\left(9k^{2}+4\right), the least common multiple of 4+9k^{2}+12k,4+9k^{2}.
9k^{2}+4=\left(9k^{2}+12k+4\right)\times 25
Use binomial theorem \left(a+b\right)^{2}=a^{2}+2ab+b^{2} to expand \left(3k+2\right)^{2}.
9k^{2}+4=225k^{2}+300k+100
Use the distributive property to multiply 9k^{2}+12k+4 by 25.
9k^{2}+4-225k^{2}=300k+100
Subtract 225k^{2} from both sides.
-216k^{2}+4=300k+100
Combine 9k^{2} and -225k^{2} to get -216k^{2}.
-216k^{2}+4-300k=100
Subtract 300k from both sides.
-216k^{2}-300k=100-4
Subtract 4 from both sides.
-216k^{2}-300k=96
Subtract 4 from 100 to get 96.
\frac{-216k^{2}-300k}{-216}=\frac{96}{-216}
Divide both sides by -216.
k^{2}+\left(-\frac{300}{-216}\right)k=\frac{96}{-216}
Dividing by -216 undoes the multiplication by -216.
k^{2}+\frac{25}{18}k=\frac{96}{-216}
Reduce the fraction \frac{-300}{-216} to lowest terms by extracting and canceling out 12.
k^{2}+\frac{25}{18}k=-\frac{4}{9}
Reduce the fraction \frac{96}{-216} to lowest terms by extracting and canceling out 24.
k^{2}+\frac{25}{18}k+\left(\frac{25}{36}\right)^{2}=-\frac{4}{9}+\left(\frac{25}{36}\right)^{2}
Divide \frac{25}{18}, the coefficient of the x term, by 2 to get \frac{25}{36}. Then add the square of \frac{25}{36} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
k^{2}+\frac{25}{18}k+\frac{625}{1296}=-\frac{4}{9}+\frac{625}{1296}
Square \frac{25}{36} by squaring both the numerator and the denominator of the fraction.
k^{2}+\frac{25}{18}k+\frac{625}{1296}=\frac{49}{1296}
Add -\frac{4}{9} to \frac{625}{1296} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(k+\frac{25}{36}\right)^{2}=\frac{49}{1296}
Factor k^{2}+\frac{25}{18}k+\frac{625}{1296}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(k+\frac{25}{36}\right)^{2}}=\sqrt{\frac{49}{1296}}
Take the square root of both sides of the equation.
k+\frac{25}{36}=\frac{7}{36} k+\frac{25}{36}=-\frac{7}{36}
Simplify.
k=-\frac{1}{2} k=-\frac{8}{9}
Subtract \frac{25}{36} from both sides of the equation.