Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\left(4-2i\right)}{\left(4+2i\right)\left(4-2i\right)}
Multiply both numerator and denominator by the complex conjugate of the denominator, 4-2i.
\frac{1\left(4-2i\right)}{4^{2}-2^{2}i^{2}}
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
\frac{1\left(4-2i\right)}{20}
By definition, i^{2} is -1. Calculate the denominator.
\frac{4-2i}{20}
Multiply 1 and 4-2i to get 4-2i.
\frac{1}{5}-\frac{1}{10}i
Divide 4-2i by 20 to get \frac{1}{5}-\frac{1}{10}i.
Re(\frac{1\left(4-2i\right)}{\left(4+2i\right)\left(4-2i\right)})
Multiply both numerator and denominator of \frac{1}{4+2i} by the complex conjugate of the denominator, 4-2i.
Re(\frac{1\left(4-2i\right)}{4^{2}-2^{2}i^{2}})
Multiplication can be transformed into difference of squares using the rule: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
Re(\frac{1\left(4-2i\right)}{20})
By definition, i^{2} is -1. Calculate the denominator.
Re(\frac{4-2i}{20})
Multiply 1 and 4-2i to get 4-2i.
Re(\frac{1}{5}-\frac{1}{10}i)
Divide 4-2i by 20 to get \frac{1}{5}-\frac{1}{10}i.
\frac{1}{5}
The real part of \frac{1}{5}-\frac{1}{10}i is \frac{1}{5}.