Skip to main content
Evaluate
Tick mark Image
Expand
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{2x+3}{\left(3x-2\right)\left(2x+3\right)}+\frac{x\left(3x-2\right)}{\left(3x-2\right)\left(2x+3\right)}+\frac{x-5}{6x^{2}+5x-6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x-2 and 2x+3 is \left(3x-2\right)\left(2x+3\right). Multiply \frac{1}{3x-2} times \frac{2x+3}{2x+3}. Multiply \frac{x}{2x+3} times \frac{3x-2}{3x-2}.
\frac{2x+3+x\left(3x-2\right)}{\left(3x-2\right)\left(2x+3\right)}+\frac{x-5}{6x^{2}+5x-6}
Since \frac{2x+3}{\left(3x-2\right)\left(2x+3\right)} and \frac{x\left(3x-2\right)}{\left(3x-2\right)\left(2x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x+3+3x^{2}-2x}{\left(3x-2\right)\left(2x+3\right)}+\frac{x-5}{6x^{2}+5x-6}
Do the multiplications in 2x+3+x\left(3x-2\right).
\frac{3+3x^{2}}{\left(3x-2\right)\left(2x+3\right)}+\frac{x-5}{6x^{2}+5x-6}
Combine like terms in 2x+3+3x^{2}-2x.
\frac{3+3x^{2}}{\left(3x-2\right)\left(2x+3\right)}+\frac{x-5}{\left(3x-2\right)\left(2x+3\right)}
Factor 6x^{2}+5x-6.
\frac{3+3x^{2}+x-5}{\left(3x-2\right)\left(2x+3\right)}
Since \frac{3+3x^{2}}{\left(3x-2\right)\left(2x+3\right)} and \frac{x-5}{\left(3x-2\right)\left(2x+3\right)} have the same denominator, add them by adding their numerators.
\frac{-2+3x^{2}+x}{\left(3x-2\right)\left(2x+3\right)}
Combine like terms in 3+3x^{2}+x-5.
\frac{\left(3x-2\right)\left(x+1\right)}{\left(3x-2\right)\left(2x+3\right)}
Factor the expressions that are not already factored in \frac{-2+3x^{2}+x}{\left(3x-2\right)\left(2x+3\right)}.
\frac{x+1}{2x+3}
Cancel out 3x-2 in both numerator and denominator.
\frac{2x+3}{\left(3x-2\right)\left(2x+3\right)}+\frac{x\left(3x-2\right)}{\left(3x-2\right)\left(2x+3\right)}+\frac{x-5}{6x^{2}+5x-6}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x-2 and 2x+3 is \left(3x-2\right)\left(2x+3\right). Multiply \frac{1}{3x-2} times \frac{2x+3}{2x+3}. Multiply \frac{x}{2x+3} times \frac{3x-2}{3x-2}.
\frac{2x+3+x\left(3x-2\right)}{\left(3x-2\right)\left(2x+3\right)}+\frac{x-5}{6x^{2}+5x-6}
Since \frac{2x+3}{\left(3x-2\right)\left(2x+3\right)} and \frac{x\left(3x-2\right)}{\left(3x-2\right)\left(2x+3\right)} have the same denominator, add them by adding their numerators.
\frac{2x+3+3x^{2}-2x}{\left(3x-2\right)\left(2x+3\right)}+\frac{x-5}{6x^{2}+5x-6}
Do the multiplications in 2x+3+x\left(3x-2\right).
\frac{3+3x^{2}}{\left(3x-2\right)\left(2x+3\right)}+\frac{x-5}{6x^{2}+5x-6}
Combine like terms in 2x+3+3x^{2}-2x.
\frac{3+3x^{2}}{\left(3x-2\right)\left(2x+3\right)}+\frac{x-5}{\left(3x-2\right)\left(2x+3\right)}
Factor 6x^{2}+5x-6.
\frac{3+3x^{2}+x-5}{\left(3x-2\right)\left(2x+3\right)}
Since \frac{3+3x^{2}}{\left(3x-2\right)\left(2x+3\right)} and \frac{x-5}{\left(3x-2\right)\left(2x+3\right)} have the same denominator, add them by adding their numerators.
\frac{-2+3x^{2}+x}{\left(3x-2\right)\left(2x+3\right)}
Combine like terms in 3+3x^{2}+x-5.
\frac{\left(3x-2\right)\left(x+1\right)}{\left(3x-2\right)\left(2x+3\right)}
Factor the expressions that are not already factored in \frac{-2+3x^{2}+x}{\left(3x-2\right)\left(2x+3\right)}.
\frac{x+1}{2x+3}
Cancel out 3x-2 in both numerator and denominator.