Evaluate
\frac{49y-3x}{21xy}
Factor
\frac{-\frac{3x}{y}+49}{21x}
Share
Copied to clipboard
\frac{1}{3x}+\frac{2\times 3}{3x}-\frac{1}{7y}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x and x is 3x. Multiply \frac{2}{x} times \frac{3}{3}.
\frac{1+2\times 3}{3x}-\frac{1}{7y}
Since \frac{1}{3x} and \frac{2\times 3}{3x} have the same denominator, add them by adding their numerators.
\frac{1+6}{3x}-\frac{1}{7y}
Do the multiplications in 1+2\times 3.
\frac{7}{3x}-\frac{1}{7y}
Do the calculations in 1+6.
\frac{7\times 7y}{21xy}-\frac{3x}{21xy}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3x and 7y is 21xy. Multiply \frac{7}{3x} times \frac{7y}{7y}. Multiply \frac{1}{7y} times \frac{3x}{3x}.
\frac{7\times 7y-3x}{21xy}
Since \frac{7\times 7y}{21xy} and \frac{3x}{21xy} have the same denominator, subtract them by subtracting their numerators.
\frac{49y-3x}{21xy}
Do the multiplications in 7\times 7y-3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}