Solve for x (complex solution)
x=-\frac{7}{3\left(y^{2}-119\right)}
y\neq -\sqrt{119}\text{ and }y\neq \sqrt{119}
Solve for x
x=-\frac{7}{3\left(y^{2}-119\right)}
|y|\neq \sqrt{119}
Solve for y (complex solution)
y=-\frac{\sqrt{1071-\frac{21}{x}}}{3}
y=\frac{\sqrt{1071-\frac{21}{x}}}{3}\text{, }x\neq 0
Solve for y
y=\frac{\sqrt{1071-\frac{21}{x}}}{3}
y=-\frac{\sqrt{1071-\frac{21}{x}}}{3}\text{, }x<0\text{ or }x\geq \frac{1}{51}
Graph
Share
Copied to clipboard
7+\frac{1}{7}y^{2}\times 21x=357x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 21x, the least common multiple of 3x,7.
7+3y^{2}x=357x
Multiply \frac{1}{7} and 21 to get 3.
7+3y^{2}x-357x=0
Subtract 357x from both sides.
3y^{2}x-357x=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
\left(3y^{2}-357\right)x=-7
Combine all terms containing x.
\frac{\left(3y^{2}-357\right)x}{3y^{2}-357}=-\frac{7}{3y^{2}-357}
Divide both sides by 3y^{2}-357.
x=-\frac{7}{3y^{2}-357}
Dividing by 3y^{2}-357 undoes the multiplication by 3y^{2}-357.
x=-\frac{7}{3\left(y^{2}-119\right)}
Divide -7 by 3y^{2}-357.
x=-\frac{7}{3\left(y^{2}-119\right)}\text{, }x\neq 0
Variable x cannot be equal to 0.
7+\frac{1}{7}y^{2}\times 21x=357x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 21x, the least common multiple of 3x,7.
7+3y^{2}x=357x
Multiply \frac{1}{7} and 21 to get 3.
7+3y^{2}x-357x=0
Subtract 357x from both sides.
3y^{2}x-357x=-7
Subtract 7 from both sides. Anything subtracted from zero gives its negation.
\left(3y^{2}-357\right)x=-7
Combine all terms containing x.
\frac{\left(3y^{2}-357\right)x}{3y^{2}-357}=-\frac{7}{3y^{2}-357}
Divide both sides by 3y^{2}-357.
x=-\frac{7}{3y^{2}-357}
Dividing by 3y^{2}-357 undoes the multiplication by 3y^{2}-357.
x=-\frac{7}{3\left(y^{2}-119\right)}
Divide -7 by 3y^{2}-357.
x=-\frac{7}{3\left(y^{2}-119\right)}\text{, }x\neq 0
Variable x cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}