Solve for x
x = -\frac{14}{5} = -2\frac{4}{5} = -2.8
Graph
Share
Copied to clipboard
x-2-3\times 4=\left(3x+6\right)\times 7
Variable x cannot be equal to any of the values -2,2 since division by zero is not defined. Multiply both sides of the equation by 3\left(x-2\right)\left(x+2\right), the least common multiple of 3x+6,x^{2}-4,x-2.
x-2-12=\left(3x+6\right)\times 7
Multiply -3 and 4 to get -12.
x-14=\left(3x+6\right)\times 7
Subtract 12 from -2 to get -14.
x-14=21x+42
Use the distributive property to multiply 3x+6 by 7.
x-14-21x=42
Subtract 21x from both sides.
-20x-14=42
Combine x and -21x to get -20x.
-20x=42+14
Add 14 to both sides.
-20x=56
Add 42 and 14 to get 56.
x=\frac{56}{-20}
Divide both sides by -20.
x=-\frac{14}{5}
Reduce the fraction \frac{56}{-20} to lowest terms by extracting and canceling out 4.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}