Solve for t
t = \frac{28}{3} = 9\frac{1}{3} \approx 9.333333333
Quiz
Linear Equation
\frac { 1 } { 3 - t } + \frac { 4 } { 3 + t } + \frac { 13 } { 9 - t ^ { 2 } } = 0
Share
Copied to clipboard
-\left(3+t\right)+\left(t-3\right)\times 4-13=0
Variable t cannot be equal to any of the values -3,3 since division by zero is not defined. Multiply both sides of the equation by \left(t-3\right)\left(t+3\right), the least common multiple of 3-t,3+t,9-t^{2}.
-3-t+\left(t-3\right)\times 4-13=0
To find the opposite of 3+t, find the opposite of each term.
-3-t+4t-12-13=0
Use the distributive property to multiply t-3 by 4.
-3+3t-12-13=0
Combine -t and 4t to get 3t.
-15+3t-13=0
Subtract 12 from -3 to get -15.
-28+3t=0
Subtract 13 from -15 to get -28.
3t=28
Add 28 to both sides. Anything plus zero gives itself.
t=\frac{28}{3}
Divide both sides by 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}