Skip to main content
Evaluate
Tick mark Image
Real Part
Tick mark Image

Similar Problems from Web Search

Share

\frac{1\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}-\frac{-1-2i}{4}
Multiply both numerator and denominator of \frac{1}{3-i} by the complex conjugate of the denominator, 3+i.
\frac{3+i}{10}-\frac{-1-2i}{4}
Do the multiplications in \frac{1\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
\frac{3}{10}+\frac{1}{10}i-\frac{-1-2i}{4}
Divide 3+i by 10 to get \frac{3}{10}+\frac{1}{10}i.
\frac{3}{10}+\frac{1}{10}i+\left(\frac{1}{4}+\frac{1}{2}i\right)
Divide -1-2i by 4 to get -\frac{1}{4}-\frac{1}{2}i.
\frac{11}{20}+\frac{3}{5}i
Add \frac{3}{10}+\frac{1}{10}i and \frac{1}{4}+\frac{1}{2}i to get \frac{11}{20}+\frac{3}{5}i.
Re(\frac{1\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}-\frac{-1-2i}{4})
Multiply both numerator and denominator of \frac{1}{3-i} by the complex conjugate of the denominator, 3+i.
Re(\frac{3+i}{10}-\frac{-1-2i}{4})
Do the multiplications in \frac{1\left(3+i\right)}{\left(3-i\right)\left(3+i\right)}.
Re(\frac{3}{10}+\frac{1}{10}i-\frac{-1-2i}{4})
Divide 3+i by 10 to get \frac{3}{10}+\frac{1}{10}i.
Re(\frac{3}{10}+\frac{1}{10}i+\left(\frac{1}{4}+\frac{1}{2}i\right))
Divide -1-2i by 4 to get -\frac{1}{4}-\frac{1}{2}i.
Re(\frac{11}{20}+\frac{3}{5}i)
Add \frac{3}{10}+\frac{1}{10}i and \frac{1}{4}+\frac{1}{2}i to get \frac{11}{20}+\frac{3}{5}i.
\frac{11}{20}
The real part of \frac{11}{20}+\frac{3}{5}i is \frac{11}{20}.