Solve for s
s=\frac{2\left(xy+9z\right)}{3}
Solve for x
\left\{\begin{matrix}x=-\frac{3\left(6z-s\right)}{2y}\text{, }&y\neq 0\\x\in \mathrm{R}\text{, }&z=\frac{s}{6}\text{ and }y=0\end{matrix}\right.
Share
Copied to clipboard
\frac{1}{3}xy+3z=\frac{1}{2}s
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{2}s=\frac{1}{3}xy+3z
Swap sides so that all variable terms are on the left hand side.
\frac{1}{2}s=\frac{xy}{3}+3z
The equation is in standard form.
\frac{\frac{1}{2}s}{\frac{1}{2}}=\frac{\frac{xy}{3}+3z}{\frac{1}{2}}
Multiply both sides by 2.
s=\frac{\frac{xy}{3}+3z}{\frac{1}{2}}
Dividing by \frac{1}{2} undoes the multiplication by \frac{1}{2}.
s=\frac{2xy}{3}+6z
Divide \frac{xy}{3}+3z by \frac{1}{2} by multiplying \frac{xy}{3}+3z by the reciprocal of \frac{1}{2}.
\frac{1}{3}xy+3z=\frac{1}{2}s
Reduce the fraction \frac{2}{4} to lowest terms by extracting and canceling out 2.
\frac{1}{3}xy=\frac{1}{2}s-3z
Subtract 3z from both sides.
\frac{y}{3}x=\frac{s}{2}-3z
The equation is in standard form.
\frac{3\times \frac{y}{3}x}{y}=\frac{3\left(\frac{s}{2}-3z\right)}{y}
Divide both sides by \frac{1}{3}y.
x=\frac{3\left(\frac{s}{2}-3z\right)}{y}
Dividing by \frac{1}{3}y undoes the multiplication by \frac{1}{3}y.
x=\frac{3\left(s-6z\right)}{2y}
Divide \frac{s}{2}-3z by \frac{1}{3}y.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}