Solve for x
x=2\sqrt{6}+6\approx 10.898979486
x=6-2\sqrt{6}\approx 1.101020514
Graph
Share
Copied to clipboard
\frac{1}{3}x^{2}-4x+4=0
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times \frac{1}{3}\times 4}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, -4 for b, and 4 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-4\right)±\sqrt{16-4\times \frac{1}{3}\times 4}}{2\times \frac{1}{3}}
Square -4.
x=\frac{-\left(-4\right)±\sqrt{16-\frac{4}{3}\times 4}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
x=\frac{-\left(-4\right)±\sqrt{16-\frac{16}{3}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times 4.
x=\frac{-\left(-4\right)±\sqrt{\frac{32}{3}}}{2\times \frac{1}{3}}
Add 16 to -\frac{16}{3}.
x=\frac{-\left(-4\right)±\frac{4\sqrt{6}}{3}}{2\times \frac{1}{3}}
Take the square root of \frac{32}{3}.
x=\frac{4±\frac{4\sqrt{6}}{3}}{2\times \frac{1}{3}}
The opposite of -4 is 4.
x=\frac{4±\frac{4\sqrt{6}}{3}}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
x=\frac{\frac{4\sqrt{6}}{3}+4}{\frac{2}{3}}
Now solve the equation x=\frac{4±\frac{4\sqrt{6}}{3}}{\frac{2}{3}} when ± is plus. Add 4 to \frac{4\sqrt{6}}{3}.
x=2\sqrt{6}+6
Divide 4+\frac{4\sqrt{6}}{3} by \frac{2}{3} by multiplying 4+\frac{4\sqrt{6}}{3} by the reciprocal of \frac{2}{3}.
x=\frac{-\frac{4\sqrt{6}}{3}+4}{\frac{2}{3}}
Now solve the equation x=\frac{4±\frac{4\sqrt{6}}{3}}{\frac{2}{3}} when ± is minus. Subtract \frac{4\sqrt{6}}{3} from 4.
x=6-2\sqrt{6}
Divide 4-\frac{4\sqrt{6}}{3} by \frac{2}{3} by multiplying 4-\frac{4\sqrt{6}}{3} by the reciprocal of \frac{2}{3}.
x=2\sqrt{6}+6 x=6-2\sqrt{6}
The equation is now solved.
\frac{1}{3}x^{2}-4x+4=0
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{3}x^{2}-4x+4-4=-4
Subtract 4 from both sides of the equation.
\frac{1}{3}x^{2}-4x=-4
Subtracting 4 from itself leaves 0.
\frac{\frac{1}{3}x^{2}-4x}{\frac{1}{3}}=-\frac{4}{\frac{1}{3}}
Multiply both sides by 3.
x^{2}+\left(-\frac{4}{\frac{1}{3}}\right)x=-\frac{4}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
x^{2}-12x=-\frac{4}{\frac{1}{3}}
Divide -4 by \frac{1}{3} by multiplying -4 by the reciprocal of \frac{1}{3}.
x^{2}-12x=-12
Divide -4 by \frac{1}{3} by multiplying -4 by the reciprocal of \frac{1}{3}.
x^{2}-12x+\left(-6\right)^{2}=-12+\left(-6\right)^{2}
Divide -12, the coefficient of the x term, by 2 to get -6. Then add the square of -6 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-12x+36=-12+36
Square -6.
x^{2}-12x+36=24
Add -12 to 36.
\left(x-6\right)^{2}=24
Factor x^{2}-12x+36. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-6\right)^{2}}=\sqrt{24}
Take the square root of both sides of the equation.
x-6=2\sqrt{6} x-6=-2\sqrt{6}
Simplify.
x=2\sqrt{6}+6 x=6-2\sqrt{6}
Add 6 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}