Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{3}x^{2}-\frac{4}{3}x-4=16
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{3}x^{2}-\frac{4}{3}x-4-16=16-16
Subtract 16 from both sides of the equation.
\frac{1}{3}x^{2}-\frac{4}{3}x-4-16=0
Subtracting 16 from itself leaves 0.
\frac{1}{3}x^{2}-\frac{4}{3}x-20=0
Subtract 16 from -4.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\left(-\frac{4}{3}\right)^{2}-4\times \frac{1}{3}\left(-20\right)}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, -\frac{4}{3} for b, and -20 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-4\times \frac{1}{3}\left(-20\right)}}{2\times \frac{1}{3}}
Square -\frac{4}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}-\frac{4}{3}\left(-20\right)}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{16}{9}+\frac{80}{3}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times -20.
x=\frac{-\left(-\frac{4}{3}\right)±\sqrt{\frac{256}{9}}}{2\times \frac{1}{3}}
Add \frac{16}{9} to \frac{80}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{4}{3}\right)±\frac{16}{3}}{2\times \frac{1}{3}}
Take the square root of \frac{256}{9}.
x=\frac{\frac{4}{3}±\frac{16}{3}}{2\times \frac{1}{3}}
The opposite of -\frac{4}{3} is \frac{4}{3}.
x=\frac{\frac{4}{3}±\frac{16}{3}}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
x=\frac{\frac{20}{3}}{\frac{2}{3}}
Now solve the equation x=\frac{\frac{4}{3}±\frac{16}{3}}{\frac{2}{3}} when ± is plus. Add \frac{4}{3} to \frac{16}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=10
Divide \frac{20}{3} by \frac{2}{3} by multiplying \frac{20}{3} by the reciprocal of \frac{2}{3}.
x=-\frac{4}{\frac{2}{3}}
Now solve the equation x=\frac{\frac{4}{3}±\frac{16}{3}}{\frac{2}{3}} when ± is minus. Subtract \frac{16}{3} from \frac{4}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-6
Divide -4 by \frac{2}{3} by multiplying -4 by the reciprocal of \frac{2}{3}.
x=10 x=-6
The equation is now solved.
\frac{1}{3}x^{2}-\frac{4}{3}x-4=16
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{1}{3}x^{2}-\frac{4}{3}x-4-\left(-4\right)=16-\left(-4\right)
Add 4 to both sides of the equation.
\frac{1}{3}x^{2}-\frac{4}{3}x=16-\left(-4\right)
Subtracting -4 from itself leaves 0.
\frac{1}{3}x^{2}-\frac{4}{3}x=20
Subtract -4 from 16.
\frac{\frac{1}{3}x^{2}-\frac{4}{3}x}{\frac{1}{3}}=\frac{20}{\frac{1}{3}}
Multiply both sides by 3.
x^{2}+\left(-\frac{\frac{4}{3}}{\frac{1}{3}}\right)x=\frac{20}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
x^{2}-4x=\frac{20}{\frac{1}{3}}
Divide -\frac{4}{3} by \frac{1}{3} by multiplying -\frac{4}{3} by the reciprocal of \frac{1}{3}.
x^{2}-4x=60
Divide 20 by \frac{1}{3} by multiplying 20 by the reciprocal of \frac{1}{3}.
x^{2}-4x+\left(-2\right)^{2}=60+\left(-2\right)^{2}
Divide -4, the coefficient of the x term, by 2 to get -2. Then add the square of -2 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-4x+4=60+4
Square -2.
x^{2}-4x+4=64
Add 60 to 4.
\left(x-2\right)^{2}=64
Factor x^{2}-4x+4. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-2\right)^{2}}=\sqrt{64}
Take the square root of both sides of the equation.
x-2=8 x-2=-8
Simplify.
x=10 x=-6
Add 2 to both sides of the equation.