Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

-\frac{2}{3}x^{2}+1=\frac{4}{9}
Combine \frac{1}{3}x^{2} and -x^{2} to get -\frac{2}{3}x^{2}.
-\frac{2}{3}x^{2}=\frac{4}{9}-1
Subtract 1 from both sides.
-\frac{2}{3}x^{2}=-\frac{5}{9}
Subtract 1 from \frac{4}{9} to get -\frac{5}{9}.
x^{2}=-\frac{5}{9}\left(-\frac{3}{2}\right)
Multiply both sides by -\frac{3}{2}, the reciprocal of -\frac{2}{3}.
x^{2}=\frac{5}{6}
Multiply -\frac{5}{9} and -\frac{3}{2} to get \frac{5}{6}.
x=\frac{\sqrt{30}}{6} x=-\frac{\sqrt{30}}{6}
Take the square root of both sides of the equation.
-\frac{2}{3}x^{2}+1=\frac{4}{9}
Combine \frac{1}{3}x^{2} and -x^{2} to get -\frac{2}{3}x^{2}.
-\frac{2}{3}x^{2}+1-\frac{4}{9}=0
Subtract \frac{4}{9} from both sides.
-\frac{2}{3}x^{2}+\frac{5}{9}=0
Subtract \frac{4}{9} from 1 to get \frac{5}{9}.
x=\frac{0±\sqrt{0^{2}-4\left(-\frac{2}{3}\right)\times \frac{5}{9}}}{2\left(-\frac{2}{3}\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -\frac{2}{3} for a, 0 for b, and \frac{5}{9} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{0±\sqrt{-4\left(-\frac{2}{3}\right)\times \frac{5}{9}}}{2\left(-\frac{2}{3}\right)}
Square 0.
x=\frac{0±\sqrt{\frac{8}{3}\times \frac{5}{9}}}{2\left(-\frac{2}{3}\right)}
Multiply -4 times -\frac{2}{3}.
x=\frac{0±\sqrt{\frac{40}{27}}}{2\left(-\frac{2}{3}\right)}
Multiply \frac{8}{3} times \frac{5}{9} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{0±\frac{2\sqrt{30}}{9}}{2\left(-\frac{2}{3}\right)}
Take the square root of \frac{40}{27}.
x=\frac{0±\frac{2\sqrt{30}}{9}}{-\frac{4}{3}}
Multiply 2 times -\frac{2}{3}.
x=-\frac{\sqrt{30}}{6}
Now solve the equation x=\frac{0±\frac{2\sqrt{30}}{9}}{-\frac{4}{3}} when ± is plus.
x=\frac{\sqrt{30}}{6}
Now solve the equation x=\frac{0±\frac{2\sqrt{30}}{9}}{-\frac{4}{3}} when ± is minus.
x=-\frac{\sqrt{30}}{6} x=\frac{\sqrt{30}}{6}
The equation is now solved.