Solve for x
x=\frac{\sqrt{111}-6}{5}\approx 0.907130751
x=\frac{-\sqrt{111}-6}{5}\approx -3.307130751
Graph
Share
Copied to clipboard
\frac{1}{3}x^{2}+\frac{4}{5}x=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{3}x^{2}+\frac{4}{5}x-1=1-1
Subtract 1 from both sides of the equation.
\frac{1}{3}x^{2}+\frac{4}{5}x-1=0
Subtracting 1 from itself leaves 0.
x=\frac{-\frac{4}{5}±\sqrt{\left(\frac{4}{5}\right)^{2}-4\times \frac{1}{3}\left(-1\right)}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, \frac{4}{5} for b, and -1 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{4}{5}±\sqrt{\frac{16}{25}-4\times \frac{1}{3}\left(-1\right)}}{2\times \frac{1}{3}}
Square \frac{4}{5} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{4}{5}±\sqrt{\frac{16}{25}-\frac{4}{3}\left(-1\right)}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
x=\frac{-\frac{4}{5}±\sqrt{\frac{16}{25}+\frac{4}{3}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times -1.
x=\frac{-\frac{4}{5}±\sqrt{\frac{148}{75}}}{2\times \frac{1}{3}}
Add \frac{16}{25} to \frac{4}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{4}{5}±\frac{2\sqrt{111}}{15}}{2\times \frac{1}{3}}
Take the square root of \frac{148}{75}.
x=\frac{-\frac{4}{5}±\frac{2\sqrt{111}}{15}}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
x=\frac{\frac{2\sqrt{111}}{15}-\frac{4}{5}}{\frac{2}{3}}
Now solve the equation x=\frac{-\frac{4}{5}±\frac{2\sqrt{111}}{15}}{\frac{2}{3}} when ± is plus. Add -\frac{4}{5} to \frac{2\sqrt{111}}{15}.
x=\frac{\sqrt{111}-6}{5}
Divide -\frac{4}{5}+\frac{2\sqrt{111}}{15} by \frac{2}{3} by multiplying -\frac{4}{5}+\frac{2\sqrt{111}}{15} by the reciprocal of \frac{2}{3}.
x=\frac{-\frac{2\sqrt{111}}{15}-\frac{4}{5}}{\frac{2}{3}}
Now solve the equation x=\frac{-\frac{4}{5}±\frac{2\sqrt{111}}{15}}{\frac{2}{3}} when ± is minus. Subtract \frac{2\sqrt{111}}{15} from -\frac{4}{5}.
x=\frac{-\sqrt{111}-6}{5}
Divide -\frac{4}{5}-\frac{2\sqrt{111}}{15} by \frac{2}{3} by multiplying -\frac{4}{5}-\frac{2\sqrt{111}}{15} by the reciprocal of \frac{2}{3}.
x=\frac{\sqrt{111}-6}{5} x=\frac{-\sqrt{111}-6}{5}
The equation is now solved.
\frac{1}{3}x^{2}+\frac{4}{5}x=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{3}x^{2}+\frac{4}{5}x}{\frac{1}{3}}=\frac{1}{\frac{1}{3}}
Multiply both sides by 3.
x^{2}+\frac{\frac{4}{5}}{\frac{1}{3}}x=\frac{1}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
x^{2}+\frac{12}{5}x=\frac{1}{\frac{1}{3}}
Divide \frac{4}{5} by \frac{1}{3} by multiplying \frac{4}{5} by the reciprocal of \frac{1}{3}.
x^{2}+\frac{12}{5}x=3
Divide 1 by \frac{1}{3} by multiplying 1 by the reciprocal of \frac{1}{3}.
x^{2}+\frac{12}{5}x+\left(\frac{6}{5}\right)^{2}=3+\left(\frac{6}{5}\right)^{2}
Divide \frac{12}{5}, the coefficient of the x term, by 2 to get \frac{6}{5}. Then add the square of \frac{6}{5} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{12}{5}x+\frac{36}{25}=3+\frac{36}{25}
Square \frac{6}{5} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{12}{5}x+\frac{36}{25}=\frac{111}{25}
Add 3 to \frac{36}{25}.
\left(x+\frac{6}{5}\right)^{2}=\frac{111}{25}
Factor x^{2}+\frac{12}{5}x+\frac{36}{25}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{6}{5}\right)^{2}}=\sqrt{\frac{111}{25}}
Take the square root of both sides of the equation.
x+\frac{6}{5}=\frac{\sqrt{111}}{5} x+\frac{6}{5}=-\frac{\sqrt{111}}{5}
Simplify.
x=\frac{\sqrt{111}-6}{5} x=\frac{-\sqrt{111}-6}{5}
Subtract \frac{6}{5} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}