Solve for x
x = -\frac{5}{2} = -2\frac{1}{2} = -2.5
x=1
Graph
Share
Copied to clipboard
\frac{1}{3}x^{2}+\frac{1}{2}x=\frac{5}{6}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{3}x^{2}+\frac{1}{2}x-\frac{5}{6}=\frac{5}{6}-\frac{5}{6}
Subtract \frac{5}{6} from both sides of the equation.
\frac{1}{3}x^{2}+\frac{1}{2}x-\frac{5}{6}=0
Subtracting \frac{5}{6} from itself leaves 0.
x=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\times \frac{1}{3}\left(-\frac{5}{6}\right)}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, \frac{1}{2} for b, and -\frac{5}{6} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\times \frac{1}{3}\left(-\frac{5}{6}\right)}}{2\times \frac{1}{3}}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-\frac{4}{3}\left(-\frac{5}{6}\right)}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
x=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}+\frac{10}{9}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times -\frac{5}{6} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1}{2}±\sqrt{\frac{49}{36}}}{2\times \frac{1}{3}}
Add \frac{1}{4} to \frac{10}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\frac{1}{2}±\frac{7}{6}}{2\times \frac{1}{3}}
Take the square root of \frac{49}{36}.
x=\frac{-\frac{1}{2}±\frac{7}{6}}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
x=\frac{\frac{2}{3}}{\frac{2}{3}}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{7}{6}}{\frac{2}{3}} when ± is plus. Add -\frac{1}{2} to \frac{7}{6} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=1
Divide \frac{2}{3} by \frac{2}{3} by multiplying \frac{2}{3} by the reciprocal of \frac{2}{3}.
x=-\frac{\frac{5}{3}}{\frac{2}{3}}
Now solve the equation x=\frac{-\frac{1}{2}±\frac{7}{6}}{\frac{2}{3}} when ± is minus. Subtract \frac{7}{6} from -\frac{1}{2} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-\frac{5}{2}
Divide -\frac{5}{3} by \frac{2}{3} by multiplying -\frac{5}{3} by the reciprocal of \frac{2}{3}.
x=1 x=-\frac{5}{2}
The equation is now solved.
\frac{1}{3}x^{2}+\frac{1}{2}x=\frac{5}{6}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{3}x^{2}+\frac{1}{2}x}{\frac{1}{3}}=\frac{\frac{5}{6}}{\frac{1}{3}}
Multiply both sides by 3.
x^{2}+\frac{\frac{1}{2}}{\frac{1}{3}}x=\frac{\frac{5}{6}}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
x^{2}+\frac{3}{2}x=\frac{\frac{5}{6}}{\frac{1}{3}}
Divide \frac{1}{2} by \frac{1}{3} by multiplying \frac{1}{2} by the reciprocal of \frac{1}{3}.
x^{2}+\frac{3}{2}x=\frac{5}{2}
Divide \frac{5}{6} by \frac{1}{3} by multiplying \frac{5}{6} by the reciprocal of \frac{1}{3}.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=\frac{5}{2}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{5}{2}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{49}{16}
Add \frac{5}{2} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{4}\right)^{2}=\frac{49}{16}
Factor x^{2}+\frac{3}{2}x+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{49}{16}}
Take the square root of both sides of the equation.
x+\frac{3}{4}=\frac{7}{4} x+\frac{3}{4}=-\frac{7}{4}
Simplify.
x=1 x=-\frac{5}{2}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}