Solve for x
x\leq 2
Graph
Share
Copied to clipboard
12x^{2}+18-3\left(9x+4\right)+12\left(5-x^{2}\right)\geq 4\left(2x-1\right)
Multiply both sides of the equation by 36, the least common multiple of 3,2,12,9. Since 36 is positive, the inequality direction remains the same.
12x^{2}+18-27x-12+12\left(5-x^{2}\right)\geq 4\left(2x-1\right)
Use the distributive property to multiply -3 by 9x+4.
12x^{2}+6-27x+12\left(5-x^{2}\right)\geq 4\left(2x-1\right)
Subtract 12 from 18 to get 6.
12x^{2}+6-27x+60-12x^{2}\geq 4\left(2x-1\right)
Use the distributive property to multiply 12 by 5-x^{2}.
12x^{2}+66-27x-12x^{2}\geq 4\left(2x-1\right)
Add 6 and 60 to get 66.
66-27x\geq 4\left(2x-1\right)
Combine 12x^{2} and -12x^{2} to get 0.
66-27x\geq 8x-4
Use the distributive property to multiply 4 by 2x-1.
66-27x-8x\geq -4
Subtract 8x from both sides.
66-35x\geq -4
Combine -27x and -8x to get -35x.
-35x\geq -4-66
Subtract 66 from both sides.
-35x\geq -70
Subtract 66 from -4 to get -70.
x\leq \frac{-70}{-35}
Divide both sides by -35. Since -35 is negative, the inequality direction is changed.
x\leq 2
Divide -70 by -35 to get 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}