Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{3}x+\frac{5}{17}-\frac{14}{27}x=\frac{19}{28}
Subtract \frac{14}{27}x from both sides.
-\frac{5}{27}x+\frac{5}{17}=\frac{19}{28}
Combine \frac{1}{3}x and -\frac{14}{27}x to get -\frac{5}{27}x.
-\frac{5}{27}x=\frac{19}{28}-\frac{5}{17}
Subtract \frac{5}{17} from both sides.
-\frac{5}{27}x=\frac{323}{476}-\frac{140}{476}
Least common multiple of 28 and 17 is 476. Convert \frac{19}{28} and \frac{5}{17} to fractions with denominator 476.
-\frac{5}{27}x=\frac{323-140}{476}
Since \frac{323}{476} and \frac{140}{476} have the same denominator, subtract them by subtracting their numerators.
-\frac{5}{27}x=\frac{183}{476}
Subtract 140 from 323 to get 183.
x=\frac{183}{476}\left(-\frac{27}{5}\right)
Multiply both sides by -\frac{27}{5}, the reciprocal of -\frac{5}{27}.
x=\frac{183\left(-27\right)}{476\times 5}
Multiply \frac{183}{476} times -\frac{27}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-4941}{2380}
Do the multiplications in the fraction \frac{183\left(-27\right)}{476\times 5}.
x=-\frac{4941}{2380}
Fraction \frac{-4941}{2380} can be rewritten as -\frac{4941}{2380} by extracting the negative sign.