Solve for m
m=-1
m=\frac{3}{4}=0.75
Share
Copied to clipboard
\frac{1}{3}m^{2}+\frac{1}{12}m=\frac{1}{4}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{3}m^{2}+\frac{1}{12}m-\frac{1}{4}=\frac{1}{4}-\frac{1}{4}
Subtract \frac{1}{4} from both sides of the equation.
\frac{1}{3}m^{2}+\frac{1}{12}m-\frac{1}{4}=0
Subtracting \frac{1}{4} from itself leaves 0.
m=\frac{-\frac{1}{12}±\sqrt{\left(\frac{1}{12}\right)^{2}-4\times \frac{1}{3}\left(-\frac{1}{4}\right)}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, \frac{1}{12} for b, and -\frac{1}{4} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
m=\frac{-\frac{1}{12}±\sqrt{\frac{1}{144}-4\times \frac{1}{3}\left(-\frac{1}{4}\right)}}{2\times \frac{1}{3}}
Square \frac{1}{12} by squaring both the numerator and the denominator of the fraction.
m=\frac{-\frac{1}{12}±\sqrt{\frac{1}{144}-\frac{4}{3}\left(-\frac{1}{4}\right)}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
m=\frac{-\frac{1}{12}±\sqrt{\frac{1}{144}+\frac{1}{3}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
m=\frac{-\frac{1}{12}±\sqrt{\frac{49}{144}}}{2\times \frac{1}{3}}
Add \frac{1}{144} to \frac{1}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
m=\frac{-\frac{1}{12}±\frac{7}{12}}{2\times \frac{1}{3}}
Take the square root of \frac{49}{144}.
m=\frac{-\frac{1}{12}±\frac{7}{12}}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
m=\frac{\frac{1}{2}}{\frac{2}{3}}
Now solve the equation m=\frac{-\frac{1}{12}±\frac{7}{12}}{\frac{2}{3}} when ± is plus. Add -\frac{1}{12} to \frac{7}{12} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
m=\frac{3}{4}
Divide \frac{1}{2} by \frac{2}{3} by multiplying \frac{1}{2} by the reciprocal of \frac{2}{3}.
m=-\frac{\frac{2}{3}}{\frac{2}{3}}
Now solve the equation m=\frac{-\frac{1}{12}±\frac{7}{12}}{\frac{2}{3}} when ± is minus. Subtract \frac{7}{12} from -\frac{1}{12} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
m=-1
Divide -\frac{2}{3} by \frac{2}{3} by multiplying -\frac{2}{3} by the reciprocal of \frac{2}{3}.
m=\frac{3}{4} m=-1
The equation is now solved.
\frac{1}{3}m^{2}+\frac{1}{12}m=\frac{1}{4}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{3}m^{2}+\frac{1}{12}m}{\frac{1}{3}}=\frac{\frac{1}{4}}{\frac{1}{3}}
Multiply both sides by 3.
m^{2}+\frac{\frac{1}{12}}{\frac{1}{3}}m=\frac{\frac{1}{4}}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
m^{2}+\frac{1}{4}m=\frac{\frac{1}{4}}{\frac{1}{3}}
Divide \frac{1}{12} by \frac{1}{3} by multiplying \frac{1}{12} by the reciprocal of \frac{1}{3}.
m^{2}+\frac{1}{4}m=\frac{3}{4}
Divide \frac{1}{4} by \frac{1}{3} by multiplying \frac{1}{4} by the reciprocal of \frac{1}{3}.
m^{2}+\frac{1}{4}m+\left(\frac{1}{8}\right)^{2}=\frac{3}{4}+\left(\frac{1}{8}\right)^{2}
Divide \frac{1}{4}, the coefficient of the x term, by 2 to get \frac{1}{8}. Then add the square of \frac{1}{8} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
m^{2}+\frac{1}{4}m+\frac{1}{64}=\frac{3}{4}+\frac{1}{64}
Square \frac{1}{8} by squaring both the numerator and the denominator of the fraction.
m^{2}+\frac{1}{4}m+\frac{1}{64}=\frac{49}{64}
Add \frac{3}{4} to \frac{1}{64} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(m+\frac{1}{8}\right)^{2}=\frac{49}{64}
Factor m^{2}+\frac{1}{4}m+\frac{1}{64}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(m+\frac{1}{8}\right)^{2}}=\sqrt{\frac{49}{64}}
Take the square root of both sides of the equation.
m+\frac{1}{8}=\frac{7}{8} m+\frac{1}{8}=-\frac{7}{8}
Simplify.
m=\frac{3}{4} m=-1
Subtract \frac{1}{8} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}