Solve for d
d=\frac{\sqrt{5}-3}{4}\approx -0.190983006
d=\frac{-\sqrt{5}-3}{4}\approx -1.309016994
Share
Copied to clipboard
\frac{1}{3}d^{2}+\frac{1}{2}d=-\frac{1}{12}
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
\frac{1}{3}d^{2}+\frac{1}{2}d-\left(-\frac{1}{12}\right)=-\frac{1}{12}-\left(-\frac{1}{12}\right)
Add \frac{1}{12} to both sides of the equation.
\frac{1}{3}d^{2}+\frac{1}{2}d-\left(-\frac{1}{12}\right)=0
Subtracting -\frac{1}{12} from itself leaves 0.
\frac{1}{3}d^{2}+\frac{1}{2}d+\frac{1}{12}=0
Subtract -\frac{1}{12} from 0.
d=\frac{-\frac{1}{2}±\sqrt{\left(\frac{1}{2}\right)^{2}-4\times \frac{1}{3}\times \frac{1}{12}}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, \frac{1}{2} for b, and \frac{1}{12} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
d=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-4\times \frac{1}{3}\times \frac{1}{12}}}{2\times \frac{1}{3}}
Square \frac{1}{2} by squaring both the numerator and the denominator of the fraction.
d=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-\frac{4}{3}\times \frac{1}{12}}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
d=\frac{-\frac{1}{2}±\sqrt{\frac{1}{4}-\frac{1}{9}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times \frac{1}{12} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
d=\frac{-\frac{1}{2}±\sqrt{\frac{5}{36}}}{2\times \frac{1}{3}}
Add \frac{1}{4} to -\frac{1}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
d=\frac{-\frac{1}{2}±\frac{\sqrt{5}}{6}}{2\times \frac{1}{3}}
Take the square root of \frac{5}{36}.
d=\frac{-\frac{1}{2}±\frac{\sqrt{5}}{6}}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
d=\frac{\frac{\sqrt{5}}{6}-\frac{1}{2}}{\frac{2}{3}}
Now solve the equation d=\frac{-\frac{1}{2}±\frac{\sqrt{5}}{6}}{\frac{2}{3}} when ± is plus. Add -\frac{1}{2} to \frac{\sqrt{5}}{6}.
d=\frac{\sqrt{5}-3}{4}
Divide -\frac{1}{2}+\frac{\sqrt{5}}{6} by \frac{2}{3} by multiplying -\frac{1}{2}+\frac{\sqrt{5}}{6} by the reciprocal of \frac{2}{3}.
d=\frac{-\frac{\sqrt{5}}{6}-\frac{1}{2}}{\frac{2}{3}}
Now solve the equation d=\frac{-\frac{1}{2}±\frac{\sqrt{5}}{6}}{\frac{2}{3}} when ± is minus. Subtract \frac{\sqrt{5}}{6} from -\frac{1}{2}.
d=\frac{-\sqrt{5}-3}{4}
Divide -\frac{1}{2}-\frac{\sqrt{5}}{6} by \frac{2}{3} by multiplying -\frac{1}{2}-\frac{\sqrt{5}}{6} by the reciprocal of \frac{2}{3}.
d=\frac{\sqrt{5}-3}{4} d=\frac{-\sqrt{5}-3}{4}
The equation is now solved.
\frac{1}{3}d^{2}+\frac{1}{2}d=-\frac{1}{12}
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
\frac{\frac{1}{3}d^{2}+\frac{1}{2}d}{\frac{1}{3}}=-\frac{\frac{1}{12}}{\frac{1}{3}}
Multiply both sides by 3.
d^{2}+\frac{\frac{1}{2}}{\frac{1}{3}}d=-\frac{\frac{1}{12}}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
d^{2}+\frac{3}{2}d=-\frac{\frac{1}{12}}{\frac{1}{3}}
Divide \frac{1}{2} by \frac{1}{3} by multiplying \frac{1}{2} by the reciprocal of \frac{1}{3}.
d^{2}+\frac{3}{2}d=-\frac{1}{4}
Divide -\frac{1}{12} by \frac{1}{3} by multiplying -\frac{1}{12} by the reciprocal of \frac{1}{3}.
d^{2}+\frac{3}{2}d+\left(\frac{3}{4}\right)^{2}=-\frac{1}{4}+\left(\frac{3}{4}\right)^{2}
Divide \frac{3}{2}, the coefficient of the x term, by 2 to get \frac{3}{4}. Then add the square of \frac{3}{4} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
d^{2}+\frac{3}{2}d+\frac{9}{16}=-\frac{1}{4}+\frac{9}{16}
Square \frac{3}{4} by squaring both the numerator and the denominator of the fraction.
d^{2}+\frac{3}{2}d+\frac{9}{16}=\frac{5}{16}
Add -\frac{1}{4} to \frac{9}{16} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(d+\frac{3}{4}\right)^{2}=\frac{5}{16}
Factor d^{2}+\frac{3}{2}d+\frac{9}{16}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(d+\frac{3}{4}\right)^{2}}=\sqrt{\frac{5}{16}}
Take the square root of both sides of the equation.
d+\frac{3}{4}=\frac{\sqrt{5}}{4} d+\frac{3}{4}=-\frac{\sqrt{5}}{4}
Simplify.
d=\frac{\sqrt{5}-3}{4} d=\frac{-\sqrt{5}-3}{4}
Subtract \frac{3}{4} from both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}