Evaluate
\frac{1}{21}\approx 0.047619048
Factor
\frac{1}{3 \cdot 7} = 0.047619047619047616
Share
Copied to clipboard
\frac{1}{3}-\left(\frac{7}{8}\times \frac{2}{13}+\frac{\frac{1}{6.5}}{8}\right)\times \frac{1\times 7+6}{7}
Convert decimal number 0.875 to fraction \frac{875}{1000}. Reduce the fraction \frac{875}{1000} to lowest terms by extracting and canceling out 125.
\frac{1}{3}-\left(\frac{7\times 2}{8\times 13}+\frac{\frac{1}{6.5}}{8}\right)\times \frac{1\times 7+6}{7}
Multiply \frac{7}{8} times \frac{2}{13} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}-\left(\frac{14}{104}+\frac{\frac{1}{6.5}}{8}\right)\times \frac{1\times 7+6}{7}
Do the multiplications in the fraction \frac{7\times 2}{8\times 13}.
\frac{1}{3}-\left(\frac{7}{52}+\frac{\frac{1}{6.5}}{8}\right)\times \frac{1\times 7+6}{7}
Reduce the fraction \frac{14}{104} to lowest terms by extracting and canceling out 2.
\frac{1}{3}-\left(\frac{7}{52}+\frac{1}{6.5\times 8}\right)\times \frac{1\times 7+6}{7}
Express \frac{\frac{1}{6.5}}{8} as a single fraction.
\frac{1}{3}-\left(\frac{7}{52}+\frac{1}{52}\right)\times \frac{1\times 7+6}{7}
Multiply 6.5 and 8 to get 52.
\frac{1}{3}-\frac{7+1}{52}\times \frac{1\times 7+6}{7}
Since \frac{7}{52} and \frac{1}{52} have the same denominator, add them by adding their numerators.
\frac{1}{3}-\frac{8}{52}\times \frac{1\times 7+6}{7}
Add 7 and 1 to get 8.
\frac{1}{3}-\frac{2}{13}\times \frac{1\times 7+6}{7}
Reduce the fraction \frac{8}{52} to lowest terms by extracting and canceling out 4.
\frac{1}{3}-\frac{2}{13}\times \frac{7+6}{7}
Multiply 1 and 7 to get 7.
\frac{1}{3}-\frac{2}{13}\times \frac{13}{7}
Add 7 and 6 to get 13.
\frac{1}{3}-\frac{2\times 13}{13\times 7}
Multiply \frac{2}{13} times \frac{13}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{3}-\frac{2}{7}
Cancel out 13 in both numerator and denominator.
\frac{7}{21}-\frac{6}{21}
Least common multiple of 3 and 7 is 21. Convert \frac{1}{3} and \frac{2}{7} to fractions with denominator 21.
\frac{7-6}{21}
Since \frac{7}{21} and \frac{6}{21} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{21}
Subtract 6 from 7 to get 1.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}