Skip to main content
Solve for x (complex solution)
Tick mark Image
Graph

Similar Problems from Web Search

Share

-5x^{2}-\frac{3}{4}x+\frac{1}{3}=1
All equations of the form ax^{2}+bx+c=0 can be solved using the quadratic formula: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. The quadratic formula gives two solutions, one when ± is addition and one when it is subtraction.
-5x^{2}-\frac{3}{4}x+\frac{1}{3}-1=1-1
Subtract 1 from both sides of the equation.
-5x^{2}-\frac{3}{4}x+\frac{1}{3}-1=0
Subtracting 1 from itself leaves 0.
-5x^{2}-\frac{3}{4}x-\frac{2}{3}=0
Subtract 1 from \frac{1}{3}.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\left(-\frac{3}{4}\right)^{2}-4\left(-5\right)\left(-\frac{2}{3}\right)}}{2\left(-5\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -5 for a, -\frac{3}{4} for b, and -\frac{2}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{9}{16}-4\left(-5\right)\left(-\frac{2}{3}\right)}}{2\left(-5\right)}
Square -\frac{3}{4} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{9}{16}+20\left(-\frac{2}{3}\right)}}{2\left(-5\right)}
Multiply -4 times -5.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{\frac{9}{16}-\frac{40}{3}}}{2\left(-5\right)}
Multiply 20 times -\frac{2}{3}.
x=\frac{-\left(-\frac{3}{4}\right)±\sqrt{-\frac{613}{48}}}{2\left(-5\right)}
Add \frac{9}{16} to -\frac{40}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{3}{4}\right)±\frac{\sqrt{1839}i}{12}}{2\left(-5\right)}
Take the square root of -\frac{613}{48}.
x=\frac{\frac{3}{4}±\frac{\sqrt{1839}i}{12}}{2\left(-5\right)}
The opposite of -\frac{3}{4} is \frac{3}{4}.
x=\frac{\frac{3}{4}±\frac{\sqrt{1839}i}{12}}{-10}
Multiply 2 times -5.
x=\frac{\frac{\sqrt{1839}i}{12}+\frac{3}{4}}{-10}
Now solve the equation x=\frac{\frac{3}{4}±\frac{\sqrt{1839}i}{12}}{-10} when ± is plus. Add \frac{3}{4} to \frac{i\sqrt{1839}}{12}.
x=-\frac{\sqrt{1839}i}{120}-\frac{3}{40}
Divide \frac{3}{4}+\frac{i\sqrt{1839}}{12} by -10.
x=\frac{-\frac{\sqrt{1839}i}{12}+\frac{3}{4}}{-10}
Now solve the equation x=\frac{\frac{3}{4}±\frac{\sqrt{1839}i}{12}}{-10} when ± is minus. Subtract \frac{i\sqrt{1839}}{12} from \frac{3}{4}.
x=\frac{\sqrt{1839}i}{120}-\frac{3}{40}
Divide \frac{3}{4}-\frac{i\sqrt{1839}}{12} by -10.
x=-\frac{\sqrt{1839}i}{120}-\frac{3}{40} x=\frac{\sqrt{1839}i}{120}-\frac{3}{40}
The equation is now solved.
-5x^{2}-\frac{3}{4}x+\frac{1}{3}=1
Quadratic equations such as this one can be solved by completing the square. In order to complete the square, the equation must first be in the form x^{2}+bx=c.
-5x^{2}-\frac{3}{4}x+\frac{1}{3}-\frac{1}{3}=1-\frac{1}{3}
Subtract \frac{1}{3} from both sides of the equation.
-5x^{2}-\frac{3}{4}x=1-\frac{1}{3}
Subtracting \frac{1}{3} from itself leaves 0.
-5x^{2}-\frac{3}{4}x=\frac{2}{3}
Subtract \frac{1}{3} from 1.
\frac{-5x^{2}-\frac{3}{4}x}{-5}=\frac{\frac{2}{3}}{-5}
Divide both sides by -5.
x^{2}+\left(-\frac{\frac{3}{4}}{-5}\right)x=\frac{\frac{2}{3}}{-5}
Dividing by -5 undoes the multiplication by -5.
x^{2}+\frac{3}{20}x=\frac{\frac{2}{3}}{-5}
Divide -\frac{3}{4} by -5.
x^{2}+\frac{3}{20}x=-\frac{2}{15}
Divide \frac{2}{3} by -5.
x^{2}+\frac{3}{20}x+\left(\frac{3}{40}\right)^{2}=-\frac{2}{15}+\left(\frac{3}{40}\right)^{2}
Divide \frac{3}{20}, the coefficient of the x term, by 2 to get \frac{3}{40}. Then add the square of \frac{3}{40} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}+\frac{3}{20}x+\frac{9}{1600}=-\frac{2}{15}+\frac{9}{1600}
Square \frac{3}{40} by squaring both the numerator and the denominator of the fraction.
x^{2}+\frac{3}{20}x+\frac{9}{1600}=-\frac{613}{4800}
Add -\frac{2}{15} to \frac{9}{1600} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
\left(x+\frac{3}{40}\right)^{2}=-\frac{613}{4800}
Factor x^{2}+\frac{3}{20}x+\frac{9}{1600}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x+\frac{3}{40}\right)^{2}}=\sqrt{-\frac{613}{4800}}
Take the square root of both sides of the equation.
x+\frac{3}{40}=\frac{\sqrt{1839}i}{120} x+\frac{3}{40}=-\frac{\sqrt{1839}i}{120}
Simplify.
x=\frac{\sqrt{1839}i}{120}-\frac{3}{40} x=-\frac{\sqrt{1839}i}{120}-\frac{3}{40}
Subtract \frac{3}{40} from both sides of the equation.