Solve for a
a=\frac{3b}{b-3}
b\neq 0\text{ and }b\neq 3
Solve for b
b=\frac{3a}{a-3}
a\neq 0\text{ and }a\neq 3
Share
Copied to clipboard
3ab\times \frac{1}{3}-3b=3a
Variable a cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3ab, the least common multiple of 3,a,b.
ab-3b=3a
Multiply 3 and \frac{1}{3} to get 1.
ab-3b-3a=0
Subtract 3a from both sides.
ab-3a=3b
Add 3b to both sides. Anything plus zero gives itself.
\left(b-3\right)a=3b
Combine all terms containing a.
\frac{\left(b-3\right)a}{b-3}=\frac{3b}{b-3}
Divide both sides by -3+b.
a=\frac{3b}{b-3}
Dividing by -3+b undoes the multiplication by -3+b.
a=\frac{3b}{b-3}\text{, }a\neq 0
Variable a cannot be equal to 0.
3ab\times \frac{1}{3}-3b=3a
Variable b cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 3ab, the least common multiple of 3,a,b.
ab-3b=3a
Multiply 3 and \frac{1}{3} to get 1.
\left(a-3\right)b=3a
Combine all terms containing b.
\frac{\left(a-3\right)b}{a-3}=\frac{3a}{a-3}
Divide both sides by a-3.
b=\frac{3a}{a-3}
Dividing by a-3 undoes the multiplication by a-3.
b=\frac{3a}{a-3}\text{, }b\neq 0
Variable b cannot be equal to 0.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}