Solve for x
x>-15
Graph
Share
Copied to clipboard
\frac{1}{3}x+\frac{1}{3}\left(-6\right)<x+8
Use the distributive property to multiply \frac{1}{3} by x-6.
\frac{1}{3}x+\frac{-6}{3}<x+8
Multiply \frac{1}{3} and -6 to get \frac{-6}{3}.
\frac{1}{3}x-2<x+8
Divide -6 by 3 to get -2.
\frac{1}{3}x-2-x<8
Subtract x from both sides.
-\frac{2}{3}x-2<8
Combine \frac{1}{3}x and -x to get -\frac{2}{3}x.
-\frac{2}{3}x<8+2
Add 2 to both sides.
-\frac{2}{3}x<10
Add 8 and 2 to get 10.
x>10\left(-\frac{3}{2}\right)
Multiply both sides by -\frac{3}{2}, the reciprocal of -\frac{2}{3}. Since -\frac{2}{3} is negative, the inequality direction is changed.
x>\frac{10\left(-3\right)}{2}
Express 10\left(-\frac{3}{2}\right) as a single fraction.
x>\frac{-30}{2}
Multiply 10 and -3 to get -30.
x>-15
Divide -30 by 2 to get -15.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}