Solve for x
x = -\frac{11}{10} = -1\frac{1}{10} = -1.1
Graph
Share
Copied to clipboard
\frac{1}{3}x+\frac{1}{3}\left(-5\right)+\frac{2}{3}=\frac{1}{3}\left(6x-5\right)+\frac{5}{2}
Use the distributive property to multiply \frac{1}{3} by x-5.
\frac{1}{3}x+\frac{-5}{3}+\frac{2}{3}=\frac{1}{3}\left(6x-5\right)+\frac{5}{2}
Multiply \frac{1}{3} and -5 to get \frac{-5}{3}.
\frac{1}{3}x-\frac{5}{3}+\frac{2}{3}=\frac{1}{3}\left(6x-5\right)+\frac{5}{2}
Fraction \frac{-5}{3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
\frac{1}{3}x+\frac{-5+2}{3}=\frac{1}{3}\left(6x-5\right)+\frac{5}{2}
Since -\frac{5}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
\frac{1}{3}x+\frac{-3}{3}=\frac{1}{3}\left(6x-5\right)+\frac{5}{2}
Add -5 and 2 to get -3.
\frac{1}{3}x-1=\frac{1}{3}\left(6x-5\right)+\frac{5}{2}
Divide -3 by 3 to get -1.
\frac{1}{3}x-1=\frac{1}{3}\times 6x+\frac{1}{3}\left(-5\right)+\frac{5}{2}
Use the distributive property to multiply \frac{1}{3} by 6x-5.
\frac{1}{3}x-1=\frac{6}{3}x+\frac{1}{3}\left(-5\right)+\frac{5}{2}
Multiply \frac{1}{3} and 6 to get \frac{6}{3}.
\frac{1}{3}x-1=2x+\frac{1}{3}\left(-5\right)+\frac{5}{2}
Divide 6 by 3 to get 2.
\frac{1}{3}x-1=2x+\frac{-5}{3}+\frac{5}{2}
Multiply \frac{1}{3} and -5 to get \frac{-5}{3}.
\frac{1}{3}x-1=2x-\frac{5}{3}+\frac{5}{2}
Fraction \frac{-5}{3} can be rewritten as -\frac{5}{3} by extracting the negative sign.
\frac{1}{3}x-1=2x-\frac{10}{6}+\frac{15}{6}
Least common multiple of 3 and 2 is 6. Convert -\frac{5}{3} and \frac{5}{2} to fractions with denominator 6.
\frac{1}{3}x-1=2x+\frac{-10+15}{6}
Since -\frac{10}{6} and \frac{15}{6} have the same denominator, add them by adding their numerators.
\frac{1}{3}x-1=2x+\frac{5}{6}
Add -10 and 15 to get 5.
\frac{1}{3}x-1-2x=\frac{5}{6}
Subtract 2x from both sides.
-\frac{5}{3}x-1=\frac{5}{6}
Combine \frac{1}{3}x and -2x to get -\frac{5}{3}x.
-\frac{5}{3}x=\frac{5}{6}+1
Add 1 to both sides.
-\frac{5}{3}x=\frac{5}{6}+\frac{6}{6}
Convert 1 to fraction \frac{6}{6}.
-\frac{5}{3}x=\frac{5+6}{6}
Since \frac{5}{6} and \frac{6}{6} have the same denominator, add them by adding their numerators.
-\frac{5}{3}x=\frac{11}{6}
Add 5 and 6 to get 11.
x=\frac{11}{6}\left(-\frac{3}{5}\right)
Multiply both sides by -\frac{3}{5}, the reciprocal of -\frac{5}{3}.
x=\frac{11\left(-3\right)}{6\times 5}
Multiply \frac{11}{6} times -\frac{3}{5} by multiplying numerator times numerator and denominator times denominator.
x=\frac{-33}{30}
Do the multiplications in the fraction \frac{11\left(-3\right)}{6\times 5}.
x=-\frac{11}{10}
Reduce the fraction \frac{-33}{30} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}