Solve for x
x\leq \frac{5}{2}
Graph
Share
Copied to clipboard
\frac{1}{3}x+\frac{1}{3}\left(-4\right)+2\leq \frac{1}{5}\left(x+5\right)
Use the distributive property to multiply \frac{1}{3} by x-4.
\frac{1}{3}x+\frac{-4}{3}+2\leq \frac{1}{5}\left(x+5\right)
Multiply \frac{1}{3} and -4 to get \frac{-4}{3}.
\frac{1}{3}x-\frac{4}{3}+2\leq \frac{1}{5}\left(x+5\right)
Fraction \frac{-4}{3} can be rewritten as -\frac{4}{3} by extracting the negative sign.
\frac{1}{3}x-\frac{4}{3}+\frac{6}{3}\leq \frac{1}{5}\left(x+5\right)
Convert 2 to fraction \frac{6}{3}.
\frac{1}{3}x+\frac{-4+6}{3}\leq \frac{1}{5}\left(x+5\right)
Since -\frac{4}{3} and \frac{6}{3} have the same denominator, add them by adding their numerators.
\frac{1}{3}x+\frac{2}{3}\leq \frac{1}{5}\left(x+5\right)
Add -4 and 6 to get 2.
\frac{1}{3}x+\frac{2}{3}\leq \frac{1}{5}x+\frac{1}{5}\times 5
Use the distributive property to multiply \frac{1}{5} by x+5.
\frac{1}{3}x+\frac{2}{3}\leq \frac{1}{5}x+1
Cancel out 5 and 5.
\frac{1}{3}x+\frac{2}{3}-\frac{1}{5}x\leq 1
Subtract \frac{1}{5}x from both sides.
\frac{2}{15}x+\frac{2}{3}\leq 1
Combine \frac{1}{3}x and -\frac{1}{5}x to get \frac{2}{15}x.
\frac{2}{15}x\leq 1-\frac{2}{3}
Subtract \frac{2}{3} from both sides.
\frac{2}{15}x\leq \frac{3}{3}-\frac{2}{3}
Convert 1 to fraction \frac{3}{3}.
\frac{2}{15}x\leq \frac{3-2}{3}
Since \frac{3}{3} and \frac{2}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{15}x\leq \frac{1}{3}
Subtract 2 from 3 to get 1.
x\leq \frac{1}{3}\times \frac{15}{2}
Multiply both sides by \frac{15}{2}, the reciprocal of \frac{2}{15}. Since \frac{2}{15} is positive, the inequality direction remains the same.
x\leq \frac{1\times 15}{3\times 2}
Multiply \frac{1}{3} times \frac{15}{2} by multiplying numerator times numerator and denominator times denominator.
x\leq \frac{15}{6}
Do the multiplications in the fraction \frac{1\times 15}{3\times 2}.
x\leq \frac{5}{2}
Reduce the fraction \frac{15}{6} to lowest terms by extracting and canceling out 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}