Solve for x
x=24
Graph
Share
Copied to clipboard
\frac{1}{3}x+\frac{1}{3}\times 6=\frac{2}{3}\left(x-9\right)
Use the distributive property to multiply \frac{1}{3} by x+6.
\frac{1}{3}x+\frac{6}{3}=\frac{2}{3}\left(x-9\right)
Multiply \frac{1}{3} and 6 to get \frac{6}{3}.
\frac{1}{3}x+2=\frac{2}{3}\left(x-9\right)
Divide 6 by 3 to get 2.
\frac{1}{3}x+2=\frac{2}{3}x+\frac{2}{3}\left(-9\right)
Use the distributive property to multiply \frac{2}{3} by x-9.
\frac{1}{3}x+2=\frac{2}{3}x+\frac{2\left(-9\right)}{3}
Express \frac{2}{3}\left(-9\right) as a single fraction.
\frac{1}{3}x+2=\frac{2}{3}x+\frac{-18}{3}
Multiply 2 and -9 to get -18.
\frac{1}{3}x+2=\frac{2}{3}x-6
Divide -18 by 3 to get -6.
\frac{1}{3}x+2-\frac{2}{3}x=-6
Subtract \frac{2}{3}x from both sides.
-\frac{1}{3}x+2=-6
Combine \frac{1}{3}x and -\frac{2}{3}x to get -\frac{1}{3}x.
-\frac{1}{3}x=-6-2
Subtract 2 from both sides.
-\frac{1}{3}x=-8
Subtract 2 from -6 to get -8.
x=-8\left(-3\right)
Multiply both sides by -3, the reciprocal of -\frac{1}{3}.
x=24
Multiply -8 and -3 to get 24.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}