Solve for x
x=-32
Graph
Share
Copied to clipboard
\frac{1}{3}x+\frac{1}{3}\times 5=\frac{1}{4}x-1
Use the distributive property to multiply \frac{1}{3} by x+5.
\frac{1}{3}x+\frac{5}{3}=\frac{1}{4}x-1
Multiply \frac{1}{3} and 5 to get \frac{5}{3}.
\frac{1}{3}x+\frac{5}{3}-\frac{1}{4}x=-1
Subtract \frac{1}{4}x from both sides.
\frac{1}{12}x+\frac{5}{3}=-1
Combine \frac{1}{3}x and -\frac{1}{4}x to get \frac{1}{12}x.
\frac{1}{12}x=-1-\frac{5}{3}
Subtract \frac{5}{3} from both sides.
\frac{1}{12}x=-\frac{3}{3}-\frac{5}{3}
Convert -1 to fraction -\frac{3}{3}.
\frac{1}{12}x=\frac{-3-5}{3}
Since -\frac{3}{3} and \frac{5}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{12}x=-\frac{8}{3}
Subtract 5 from -3 to get -8.
x=-\frac{8}{3}\times 12
Multiply both sides by 12, the reciprocal of \frac{1}{12}.
x=\frac{-8\times 12}{3}
Express -\frac{8}{3}\times 12 as a single fraction.
x=\frac{-96}{3}
Multiply -8 and 12 to get -96.
x=-32
Divide -96 by 3 to get -32.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}