Solve for x
x>\frac{9}{4}
Graph
Share
Copied to clipboard
\frac{1}{3}x+\frac{1}{3}\times 3<\frac{1}{5}\left(3x+2\right)
Use the distributive property to multiply \frac{1}{3} by x+3.
\frac{1}{3}x+1<\frac{1}{5}\left(3x+2\right)
Cancel out 3 and 3.
\frac{1}{3}x+1<\frac{1}{5}\times 3x+\frac{1}{5}\times 2
Use the distributive property to multiply \frac{1}{5} by 3x+2.
\frac{1}{3}x+1<\frac{3}{5}x+\frac{1}{5}\times 2
Multiply \frac{1}{5} and 3 to get \frac{3}{5}.
\frac{1}{3}x+1<\frac{3}{5}x+\frac{2}{5}
Multiply \frac{1}{5} and 2 to get \frac{2}{5}.
\frac{1}{3}x+1-\frac{3}{5}x<\frac{2}{5}
Subtract \frac{3}{5}x from both sides.
-\frac{4}{15}x+1<\frac{2}{5}
Combine \frac{1}{3}x and -\frac{3}{5}x to get -\frac{4}{15}x.
-\frac{4}{15}x<\frac{2}{5}-1
Subtract 1 from both sides.
-\frac{4}{15}x<\frac{2}{5}-\frac{5}{5}
Convert 1 to fraction \frac{5}{5}.
-\frac{4}{15}x<\frac{2-5}{5}
Since \frac{2}{5} and \frac{5}{5} have the same denominator, subtract them by subtracting their numerators.
-\frac{4}{15}x<-\frac{3}{5}
Subtract 5 from 2 to get -3.
x>-\frac{3}{5}\left(-\frac{15}{4}\right)
Multiply both sides by -\frac{15}{4}, the reciprocal of -\frac{4}{15}. Since -\frac{4}{15} is negative, the inequality direction is changed.
x>\frac{-3\left(-15\right)}{5\times 4}
Multiply -\frac{3}{5} times -\frac{15}{4} by multiplying numerator times numerator and denominator times denominator.
x>\frac{45}{20}
Do the multiplications in the fraction \frac{-3\left(-15\right)}{5\times 4}.
x>\frac{9}{4}
Reduce the fraction \frac{45}{20} to lowest terms by extracting and canceling out 5.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}