Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{3}x+\frac{1}{3}-\frac{1}{4}\left(x+4\right)\geq \frac{5}{6}x-1
Use the distributive property to multiply \frac{1}{3} by x+1.
\frac{1}{3}x+\frac{1}{3}-\frac{1}{4}x-\frac{1}{4}\times 4\geq \frac{5}{6}x-1
Use the distributive property to multiply -\frac{1}{4} by x+4.
\frac{1}{3}x+\frac{1}{3}-\frac{1}{4}x-1\geq \frac{5}{6}x-1
Cancel out 4 and 4.
\frac{1}{12}x+\frac{1}{3}-1\geq \frac{5}{6}x-1
Combine \frac{1}{3}x and -\frac{1}{4}x to get \frac{1}{12}x.
\frac{1}{12}x+\frac{1}{3}-\frac{3}{3}\geq \frac{5}{6}x-1
Convert 1 to fraction \frac{3}{3}.
\frac{1}{12}x+\frac{1-3}{3}\geq \frac{5}{6}x-1
Since \frac{1}{3} and \frac{3}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{12}x-\frac{2}{3}\geq \frac{5}{6}x-1
Subtract 3 from 1 to get -2.
\frac{1}{12}x-\frac{2}{3}-\frac{5}{6}x\geq -1
Subtract \frac{5}{6}x from both sides.
-\frac{3}{4}x-\frac{2}{3}\geq -1
Combine \frac{1}{12}x and -\frac{5}{6}x to get -\frac{3}{4}x.
-\frac{3}{4}x\geq -1+\frac{2}{3}
Add \frac{2}{3} to both sides.
-\frac{3}{4}x\geq -\frac{3}{3}+\frac{2}{3}
Convert -1 to fraction -\frac{3}{3}.
-\frac{3}{4}x\geq \frac{-3+2}{3}
Since -\frac{3}{3} and \frac{2}{3} have the same denominator, add them by adding their numerators.
-\frac{3}{4}x\geq -\frac{1}{3}
Add -3 and 2 to get -1.
x\leq -\frac{1}{3}\left(-\frac{4}{3}\right)
Multiply both sides by -\frac{4}{3}, the reciprocal of -\frac{3}{4}. Since -\frac{3}{4} is negative, the inequality direction is changed.
x\leq \frac{-\left(-4\right)}{3\times 3}
Multiply -\frac{1}{3} times -\frac{4}{3} by multiplying numerator times numerator and denominator times denominator.
x\leq \frac{4}{9}
Do the multiplications in the fraction \frac{-\left(-4\right)}{3\times 3}.