Solve for z
z = \frac{32}{11} = 2\frac{10}{11} \approx 2.909090909
Share
Copied to clipboard
\frac{1}{3}\times 4z+\frac{1}{3}\times 8-16=-\frac{2}{3}\left(9z-12\right)
Use the distributive property to multiply \frac{1}{3} by 4z+8.
\frac{4}{3}z+\frac{1}{3}\times 8-16=-\frac{2}{3}\left(9z-12\right)
Multiply \frac{1}{3} and 4 to get \frac{4}{3}.
\frac{4}{3}z+\frac{8}{3}-16=-\frac{2}{3}\left(9z-12\right)
Multiply \frac{1}{3} and 8 to get \frac{8}{3}.
\frac{4}{3}z+\frac{8}{3}-\frac{48}{3}=-\frac{2}{3}\left(9z-12\right)
Convert 16 to fraction \frac{48}{3}.
\frac{4}{3}z+\frac{8-48}{3}=-\frac{2}{3}\left(9z-12\right)
Since \frac{8}{3} and \frac{48}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{3}z-\frac{40}{3}=-\frac{2}{3}\left(9z-12\right)
Subtract 48 from 8 to get -40.
\frac{4}{3}z-\frac{40}{3}=-\frac{2}{3}\times 9z-\frac{2}{3}\left(-12\right)
Use the distributive property to multiply -\frac{2}{3} by 9z-12.
\frac{4}{3}z-\frac{40}{3}=\frac{-2\times 9}{3}z-\frac{2}{3}\left(-12\right)
Express -\frac{2}{3}\times 9 as a single fraction.
\frac{4}{3}z-\frac{40}{3}=\frac{-18}{3}z-\frac{2}{3}\left(-12\right)
Multiply -2 and 9 to get -18.
\frac{4}{3}z-\frac{40}{3}=-6z-\frac{2}{3}\left(-12\right)
Divide -18 by 3 to get -6.
\frac{4}{3}z-\frac{40}{3}=-6z+\frac{-2\left(-12\right)}{3}
Express -\frac{2}{3}\left(-12\right) as a single fraction.
\frac{4}{3}z-\frac{40}{3}=-6z+\frac{24}{3}
Multiply -2 and -12 to get 24.
\frac{4}{3}z-\frac{40}{3}=-6z+8
Divide 24 by 3 to get 8.
\frac{4}{3}z-\frac{40}{3}+6z=8
Add 6z to both sides.
\frac{22}{3}z-\frac{40}{3}=8
Combine \frac{4}{3}z and 6z to get \frac{22}{3}z.
\frac{22}{3}z=8+\frac{40}{3}
Add \frac{40}{3} to both sides.
\frac{22}{3}z=\frac{24}{3}+\frac{40}{3}
Convert 8 to fraction \frac{24}{3}.
\frac{22}{3}z=\frac{24+40}{3}
Since \frac{24}{3} and \frac{40}{3} have the same denominator, add them by adding their numerators.
\frac{22}{3}z=\frac{64}{3}
Add 24 and 40 to get 64.
z=\frac{64}{3}\times \frac{3}{22}
Multiply both sides by \frac{3}{22}, the reciprocal of \frac{22}{3}.
z=\frac{64\times 3}{3\times 22}
Multiply \frac{64}{3} times \frac{3}{22} by multiplying numerator times numerator and denominator times denominator.
z=\frac{64}{22}
Cancel out 3 in both numerator and denominator.
z=\frac{32}{11}
Reduce the fraction \frac{64}{22} to lowest terms by extracting and canceling out 2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}