Skip to main content
Solve for z
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{3}\times 4z+\frac{1}{3}\times 8-16=-\frac{2}{3}\left(9z-12\right)
Use the distributive property to multiply \frac{1}{3} by 4z+8.
\frac{4}{3}z+\frac{1}{3}\times 8-16=-\frac{2}{3}\left(9z-12\right)
Multiply \frac{1}{3} and 4 to get \frac{4}{3}.
\frac{4}{3}z+\frac{8}{3}-16=-\frac{2}{3}\left(9z-12\right)
Multiply \frac{1}{3} and 8 to get \frac{8}{3}.
\frac{4}{3}z+\frac{8}{3}-\frac{48}{3}=-\frac{2}{3}\left(9z-12\right)
Convert 16 to fraction \frac{48}{3}.
\frac{4}{3}z+\frac{8-48}{3}=-\frac{2}{3}\left(9z-12\right)
Since \frac{8}{3} and \frac{48}{3} have the same denominator, subtract them by subtracting their numerators.
\frac{4}{3}z-\frac{40}{3}=-\frac{2}{3}\left(9z-12\right)
Subtract 48 from 8 to get -40.
\frac{4}{3}z-\frac{40}{3}=-\frac{2}{3}\times 9z-\frac{2}{3}\left(-12\right)
Use the distributive property to multiply -\frac{2}{3} by 9z-12.
\frac{4}{3}z-\frac{40}{3}=\frac{-2\times 9}{3}z-\frac{2}{3}\left(-12\right)
Express -\frac{2}{3}\times 9 as a single fraction.
\frac{4}{3}z-\frac{40}{3}=\frac{-18}{3}z-\frac{2}{3}\left(-12\right)
Multiply -2 and 9 to get -18.
\frac{4}{3}z-\frac{40}{3}=-6z-\frac{2}{3}\left(-12\right)
Divide -18 by 3 to get -6.
\frac{4}{3}z-\frac{40}{3}=-6z+\frac{-2\left(-12\right)}{3}
Express -\frac{2}{3}\left(-12\right) as a single fraction.
\frac{4}{3}z-\frac{40}{3}=-6z+\frac{24}{3}
Multiply -2 and -12 to get 24.
\frac{4}{3}z-\frac{40}{3}=-6z+8
Divide 24 by 3 to get 8.
\frac{4}{3}z-\frac{40}{3}+6z=8
Add 6z to both sides.
\frac{22}{3}z-\frac{40}{3}=8
Combine \frac{4}{3}z and 6z to get \frac{22}{3}z.
\frac{22}{3}z=8+\frac{40}{3}
Add \frac{40}{3} to both sides.
\frac{22}{3}z=\frac{24}{3}+\frac{40}{3}
Convert 8 to fraction \frac{24}{3}.
\frac{22}{3}z=\frac{24+40}{3}
Since \frac{24}{3} and \frac{40}{3} have the same denominator, add them by adding their numerators.
\frac{22}{3}z=\frac{64}{3}
Add 24 and 40 to get 64.
z=\frac{64}{3}\times \frac{3}{22}
Multiply both sides by \frac{3}{22}, the reciprocal of \frac{22}{3}.
z=\frac{64\times 3}{3\times 22}
Multiply \frac{64}{3} times \frac{3}{22} by multiplying numerator times numerator and denominator times denominator.
z=\frac{64}{22}
Cancel out 3 in both numerator and denominator.
z=\frac{32}{11}
Reduce the fraction \frac{64}{22} to lowest terms by extracting and canceling out 2.