Evaluate
2a+\frac{76}{15}
Expand
2a+\frac{76}{15}
Share
Copied to clipboard
\frac{1}{3}\times 3a+\frac{1}{3}\left(-1\right)+\frac{2}{5}\left(4a+3\right)-\frac{3}{5}\left(a-7\right)
Use the distributive property to multiply \frac{1}{3} by 3a-1.
a+\frac{1}{3}\left(-1\right)+\frac{2}{5}\left(4a+3\right)-\frac{3}{5}\left(a-7\right)
Cancel out 3 and 3.
a-\frac{1}{3}+\frac{2}{5}\left(4a+3\right)-\frac{3}{5}\left(a-7\right)
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
a-\frac{1}{3}+\frac{2}{5}\times 4a+\frac{2}{5}\times 3-\frac{3}{5}\left(a-7\right)
Use the distributive property to multiply \frac{2}{5} by 4a+3.
a-\frac{1}{3}+\frac{2\times 4}{5}a+\frac{2}{5}\times 3-\frac{3}{5}\left(a-7\right)
Express \frac{2}{5}\times 4 as a single fraction.
a-\frac{1}{3}+\frac{8}{5}a+\frac{2}{5}\times 3-\frac{3}{5}\left(a-7\right)
Multiply 2 and 4 to get 8.
a-\frac{1}{3}+\frac{8}{5}a+\frac{2\times 3}{5}-\frac{3}{5}\left(a-7\right)
Express \frac{2}{5}\times 3 as a single fraction.
a-\frac{1}{3}+\frac{8}{5}a+\frac{6}{5}-\frac{3}{5}\left(a-7\right)
Multiply 2 and 3 to get 6.
\frac{13}{5}a-\frac{1}{3}+\frac{6}{5}-\frac{3}{5}\left(a-7\right)
Combine a and \frac{8}{5}a to get \frac{13}{5}a.
\frac{13}{5}a-\frac{5}{15}+\frac{18}{15}-\frac{3}{5}\left(a-7\right)
Least common multiple of 3 and 5 is 15. Convert -\frac{1}{3} and \frac{6}{5} to fractions with denominator 15.
\frac{13}{5}a+\frac{-5+18}{15}-\frac{3}{5}\left(a-7\right)
Since -\frac{5}{15} and \frac{18}{15} have the same denominator, add them by adding their numerators.
\frac{13}{5}a+\frac{13}{15}-\frac{3}{5}\left(a-7\right)
Add -5 and 18 to get 13.
\frac{13}{5}a+\frac{13}{15}-\frac{3}{5}a-\frac{3}{5}\left(-7\right)
Use the distributive property to multiply -\frac{3}{5} by a-7.
\frac{13}{5}a+\frac{13}{15}-\frac{3}{5}a+\frac{-3\left(-7\right)}{5}
Express -\frac{3}{5}\left(-7\right) as a single fraction.
\frac{13}{5}a+\frac{13}{15}-\frac{3}{5}a+\frac{21}{5}
Multiply -3 and -7 to get 21.
2a+\frac{13}{15}+\frac{21}{5}
Combine \frac{13}{5}a and -\frac{3}{5}a to get 2a.
2a+\frac{13}{15}+\frac{63}{15}
Least common multiple of 15 and 5 is 15. Convert \frac{13}{15} and \frac{21}{5} to fractions with denominator 15.
2a+\frac{13+63}{15}
Since \frac{13}{15} and \frac{63}{15} have the same denominator, add them by adding their numerators.
2a+\frac{76}{15}
Add 13 and 63 to get 76.
\frac{1}{3}\times 3a+\frac{1}{3}\left(-1\right)+\frac{2}{5}\left(4a+3\right)-\frac{3}{5}\left(a-7\right)
Use the distributive property to multiply \frac{1}{3} by 3a-1.
a+\frac{1}{3}\left(-1\right)+\frac{2}{5}\left(4a+3\right)-\frac{3}{5}\left(a-7\right)
Cancel out 3 and 3.
a-\frac{1}{3}+\frac{2}{5}\left(4a+3\right)-\frac{3}{5}\left(a-7\right)
Multiply \frac{1}{3} and -1 to get -\frac{1}{3}.
a-\frac{1}{3}+\frac{2}{5}\times 4a+\frac{2}{5}\times 3-\frac{3}{5}\left(a-7\right)
Use the distributive property to multiply \frac{2}{5} by 4a+3.
a-\frac{1}{3}+\frac{2\times 4}{5}a+\frac{2}{5}\times 3-\frac{3}{5}\left(a-7\right)
Express \frac{2}{5}\times 4 as a single fraction.
a-\frac{1}{3}+\frac{8}{5}a+\frac{2}{5}\times 3-\frac{3}{5}\left(a-7\right)
Multiply 2 and 4 to get 8.
a-\frac{1}{3}+\frac{8}{5}a+\frac{2\times 3}{5}-\frac{3}{5}\left(a-7\right)
Express \frac{2}{5}\times 3 as a single fraction.
a-\frac{1}{3}+\frac{8}{5}a+\frac{6}{5}-\frac{3}{5}\left(a-7\right)
Multiply 2 and 3 to get 6.
\frac{13}{5}a-\frac{1}{3}+\frac{6}{5}-\frac{3}{5}\left(a-7\right)
Combine a and \frac{8}{5}a to get \frac{13}{5}a.
\frac{13}{5}a-\frac{5}{15}+\frac{18}{15}-\frac{3}{5}\left(a-7\right)
Least common multiple of 3 and 5 is 15. Convert -\frac{1}{3} and \frac{6}{5} to fractions with denominator 15.
\frac{13}{5}a+\frac{-5+18}{15}-\frac{3}{5}\left(a-7\right)
Since -\frac{5}{15} and \frac{18}{15} have the same denominator, add them by adding their numerators.
\frac{13}{5}a+\frac{13}{15}-\frac{3}{5}\left(a-7\right)
Add -5 and 18 to get 13.
\frac{13}{5}a+\frac{13}{15}-\frac{3}{5}a-\frac{3}{5}\left(-7\right)
Use the distributive property to multiply -\frac{3}{5} by a-7.
\frac{13}{5}a+\frac{13}{15}-\frac{3}{5}a+\frac{-3\left(-7\right)}{5}
Express -\frac{3}{5}\left(-7\right) as a single fraction.
\frac{13}{5}a+\frac{13}{15}-\frac{3}{5}a+\frac{21}{5}
Multiply -3 and -7 to get 21.
2a+\frac{13}{15}+\frac{21}{5}
Combine \frac{13}{5}a and -\frac{3}{5}a to get 2a.
2a+\frac{13}{15}+\frac{63}{15}
Least common multiple of 15 and 5 is 15. Convert \frac{13}{15} and \frac{21}{5} to fractions with denominator 15.
2a+\frac{13+63}{15}
Since \frac{13}{15} and \frac{63}{15} have the same denominator, add them by adding their numerators.
2a+\frac{76}{15}
Add 13 and 63 to get 76.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}