Solve for z
z=-84
Share
Copied to clipboard
1+\frac{1}{4}\times \frac{-1}{2}+\frac{1}{96}z=0
Cancel out 3 and 3.
1+\frac{1}{4}\left(-\frac{1}{2}\right)+\frac{1}{96}z=0
Fraction \frac{-1}{2} can be rewritten as -\frac{1}{2} by extracting the negative sign.
1+\frac{1\left(-1\right)}{4\times 2}+\frac{1}{96}z=0
Multiply \frac{1}{4} times -\frac{1}{2} by multiplying numerator times numerator and denominator times denominator.
1+\frac{-1}{8}+\frac{1}{96}z=0
Do the multiplications in the fraction \frac{1\left(-1\right)}{4\times 2}.
1-\frac{1}{8}+\frac{1}{96}z=0
Fraction \frac{-1}{8} can be rewritten as -\frac{1}{8} by extracting the negative sign.
\frac{8}{8}-\frac{1}{8}+\frac{1}{96}z=0
Convert 1 to fraction \frac{8}{8}.
\frac{8-1}{8}+\frac{1}{96}z=0
Since \frac{8}{8} and \frac{1}{8} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{8}+\frac{1}{96}z=0
Subtract 1 from 8 to get 7.
\frac{1}{96}z=-\frac{7}{8}
Subtract \frac{7}{8} from both sides. Anything subtracted from zero gives its negation.
z=-\frac{7}{8}\times 96
Multiply both sides by 96, the reciprocal of \frac{1}{96}.
z=\frac{-7\times 96}{8}
Express -\frac{7}{8}\times 96 as a single fraction.
z=\frac{-672}{8}
Multiply -7 and 96 to get -672.
z=-84
Divide -672 by 8 to get -84.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}