Solve for y
y=-2
Graph
Share
Copied to clipboard
\frac{1}{3}\times 2y+\frac{1}{3}+\frac{1}{2}y=\frac{2}{5}\left(1-2y\right)-4
Use the distributive property to multiply \frac{1}{3} by 2y+1.
\frac{2}{3}y+\frac{1}{3}+\frac{1}{2}y=\frac{2}{5}\left(1-2y\right)-4
Multiply \frac{1}{3} and 2 to get \frac{2}{3}.
\frac{7}{6}y+\frac{1}{3}=\frac{2}{5}\left(1-2y\right)-4
Combine \frac{2}{3}y and \frac{1}{2}y to get \frac{7}{6}y.
\frac{7}{6}y+\frac{1}{3}=\frac{2}{5}+\frac{2}{5}\left(-2\right)y-4
Use the distributive property to multiply \frac{2}{5} by 1-2y.
\frac{7}{6}y+\frac{1}{3}=\frac{2}{5}+\frac{2\left(-2\right)}{5}y-4
Express \frac{2}{5}\left(-2\right) as a single fraction.
\frac{7}{6}y+\frac{1}{3}=\frac{2}{5}+\frac{-4}{5}y-4
Multiply 2 and -2 to get -4.
\frac{7}{6}y+\frac{1}{3}=\frac{2}{5}-\frac{4}{5}y-4
Fraction \frac{-4}{5} can be rewritten as -\frac{4}{5} by extracting the negative sign.
\frac{7}{6}y+\frac{1}{3}=\frac{2}{5}-\frac{4}{5}y-\frac{20}{5}
Convert 4 to fraction \frac{20}{5}.
\frac{7}{6}y+\frac{1}{3}=\frac{2-20}{5}-\frac{4}{5}y
Since \frac{2}{5} and \frac{20}{5} have the same denominator, subtract them by subtracting their numerators.
\frac{7}{6}y+\frac{1}{3}=-\frac{18}{5}-\frac{4}{5}y
Subtract 20 from 2 to get -18.
\frac{7}{6}y+\frac{1}{3}+\frac{4}{5}y=-\frac{18}{5}
Add \frac{4}{5}y to both sides.
\frac{59}{30}y+\frac{1}{3}=-\frac{18}{5}
Combine \frac{7}{6}y and \frac{4}{5}y to get \frac{59}{30}y.
\frac{59}{30}y=-\frac{18}{5}-\frac{1}{3}
Subtract \frac{1}{3} from both sides.
\frac{59}{30}y=-\frac{54}{15}-\frac{5}{15}
Least common multiple of 5 and 3 is 15. Convert -\frac{18}{5} and \frac{1}{3} to fractions with denominator 15.
\frac{59}{30}y=\frac{-54-5}{15}
Since -\frac{54}{15} and \frac{5}{15} have the same denominator, subtract them by subtracting their numerators.
\frac{59}{30}y=-\frac{59}{15}
Subtract 5 from -54 to get -59.
y=-\frac{59}{15}\times \frac{30}{59}
Multiply both sides by \frac{30}{59}, the reciprocal of \frac{59}{30}.
y=\frac{-59\times 30}{15\times 59}
Multiply -\frac{59}{15} times \frac{30}{59} by multiplying numerator times numerator and denominator times denominator.
y=\frac{-1770}{885}
Do the multiplications in the fraction \frac{-59\times 30}{15\times 59}.
y=-2
Divide -1770 by 885 to get -2.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}