Solve for m
m = \frac{15}{2} = 7\frac{1}{2} = 7.5
Share
Copied to clipboard
\frac{1}{3}\left(-\frac{5}{7}\right)m+\frac{1}{3}\times \frac{6}{7}=1-\frac{1}{3}m
Use the distributive property to multiply \frac{1}{3} by -\frac{5}{7}m+\frac{6}{7}.
\frac{1\left(-5\right)}{3\times 7}m+\frac{1}{3}\times \frac{6}{7}=1-\frac{1}{3}m
Multiply \frac{1}{3} times -\frac{5}{7} by multiplying numerator times numerator and denominator times denominator.
\frac{-5}{21}m+\frac{1}{3}\times \frac{6}{7}=1-\frac{1}{3}m
Do the multiplications in the fraction \frac{1\left(-5\right)}{3\times 7}.
-\frac{5}{21}m+\frac{1}{3}\times \frac{6}{7}=1-\frac{1}{3}m
Fraction \frac{-5}{21} can be rewritten as -\frac{5}{21} by extracting the negative sign.
-\frac{5}{21}m+\frac{1\times 6}{3\times 7}=1-\frac{1}{3}m
Multiply \frac{1}{3} times \frac{6}{7} by multiplying numerator times numerator and denominator times denominator.
-\frac{5}{21}m+\frac{6}{21}=1-\frac{1}{3}m
Do the multiplications in the fraction \frac{1\times 6}{3\times 7}.
-\frac{5}{21}m+\frac{2}{7}=1-\frac{1}{3}m
Reduce the fraction \frac{6}{21} to lowest terms by extracting and canceling out 3.
-\frac{5}{21}m+\frac{2}{7}+\frac{1}{3}m=1
Add \frac{1}{3}m to both sides.
\frac{2}{21}m+\frac{2}{7}=1
Combine -\frac{5}{21}m and \frac{1}{3}m to get \frac{2}{21}m.
\frac{2}{21}m=1-\frac{2}{7}
Subtract \frac{2}{7} from both sides.
\frac{2}{21}m=\frac{7}{7}-\frac{2}{7}
Convert 1 to fraction \frac{7}{7}.
\frac{2}{21}m=\frac{7-2}{7}
Since \frac{7}{7} and \frac{2}{7} have the same denominator, subtract them by subtracting their numerators.
\frac{2}{21}m=\frac{5}{7}
Subtract 2 from 7 to get 5.
m=\frac{5}{7}\times \frac{21}{2}
Multiply both sides by \frac{21}{2}, the reciprocal of \frac{2}{21}.
m=\frac{5\times 21}{7\times 2}
Multiply \frac{5}{7} times \frac{21}{2} by multiplying numerator times numerator and denominator times denominator.
m=\frac{105}{14}
Do the multiplications in the fraction \frac{5\times 21}{7\times 2}.
m=\frac{15}{2}
Reduce the fraction \frac{105}{14} to lowest terms by extracting and canceling out 7.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}