Evaluate
\frac{10\sqrt{3}}{3}-\sqrt{2}\approx 4.35928913
Factor
\frac{10 \sqrt{3} - 3 \sqrt{2}}{3} = 4.3592891295231615
Share
Copied to clipboard
\frac{1}{3}\left(6\sqrt{3}-\sqrt{\frac{4\times 2+1}{2}}-6\sqrt{\frac{1}{3}}\right)-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
Factor 108=6^{2}\times 3. Rewrite the square root of the product \sqrt{6^{2}\times 3} as the product of square roots \sqrt{6^{2}}\sqrt{3}. Take the square root of 6^{2}.
\frac{1}{3}\left(6\sqrt{3}-\sqrt{\frac{8+1}{2}}-6\sqrt{\frac{1}{3}}\right)-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
Multiply 4 and 2 to get 8.
\frac{1}{3}\left(6\sqrt{3}-\sqrt{\frac{9}{2}}-6\sqrt{\frac{1}{3}}\right)-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
Add 8 and 1 to get 9.
\frac{1}{3}\left(6\sqrt{3}-\frac{\sqrt{9}}{\sqrt{2}}-6\sqrt{\frac{1}{3}}\right)-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
Rewrite the square root of the division \sqrt{\frac{9}{2}} as the division of square roots \frac{\sqrt{9}}{\sqrt{2}}.
\frac{1}{3}\left(6\sqrt{3}-\frac{3}{\sqrt{2}}-6\sqrt{\frac{1}{3}}\right)-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
Calculate the square root of 9 and get 3.
\frac{1}{3}\left(6\sqrt{3}-\frac{3\sqrt{2}}{\left(\sqrt{2}\right)^{2}}-6\sqrt{\frac{1}{3}}\right)-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
Rationalize the denominator of \frac{3}{\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{1}{3}\left(6\sqrt{3}-\frac{3\sqrt{2}}{2}-6\sqrt{\frac{1}{3}}\right)-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
The square of \sqrt{2} is 2.
\frac{1}{3}\left(6\sqrt{3}-\frac{3\sqrt{2}}{2}-6\times \frac{\sqrt{1}}{\sqrt{3}}\right)-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
Rewrite the square root of the division \sqrt{\frac{1}{3}} as the division of square roots \frac{\sqrt{1}}{\sqrt{3}}.
\frac{1}{3}\left(6\sqrt{3}-\frac{3\sqrt{2}}{2}-6\times \frac{1}{\sqrt{3}}\right)-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
Calculate the square root of 1 and get 1.
\frac{1}{3}\left(6\sqrt{3}-\frac{3\sqrt{2}}{2}-6\times \frac{\sqrt{3}}{\left(\sqrt{3}\right)^{2}}\right)-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
Rationalize the denominator of \frac{1}{\sqrt{3}} by multiplying numerator and denominator by \sqrt{3}.
\frac{1}{3}\left(6\sqrt{3}-\frac{3\sqrt{2}}{2}-6\times \frac{\sqrt{3}}{3}\right)-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
The square of \sqrt{3} is 3.
\frac{1}{3}\left(6\sqrt{3}-\frac{3\sqrt{2}}{2}-2\sqrt{3}\right)-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
Cancel out 3, the greatest common factor in 6 and 3.
\frac{1}{3}\left(4\sqrt{3}-\frac{3\sqrt{2}}{2}\right)-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
Combine 6\sqrt{3} and -2\sqrt{3} to get 4\sqrt{3}.
\frac{1}{3}\left(\frac{2\times 4\sqrt{3}}{2}-\frac{3\sqrt{2}}{2}\right)-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply 4\sqrt{3} times \frac{2}{2}.
\frac{1}{3}\times \frac{2\times 4\sqrt{3}-3\sqrt{2}}{2}-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
Since \frac{2\times 4\sqrt{3}}{2} and \frac{3\sqrt{2}}{2} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}\times \frac{8\sqrt{3}-3\sqrt{2}}{2}-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
Do the multiplications in 2\times 4\sqrt{3}-3\sqrt{2}.
\frac{8\sqrt{3}-3\sqrt{2}}{3\times 2}-2\left(\sqrt{\frac{1}{8}}-\frac{1}{3}\sqrt{27}\right)
Multiply \frac{1}{3} times \frac{8\sqrt{3}-3\sqrt{2}}{2} by multiplying numerator times numerator and denominator times denominator.
\frac{8\sqrt{3}-3\sqrt{2}}{3\times 2}-2\left(\frac{\sqrt{1}}{\sqrt{8}}-\frac{1}{3}\sqrt{27}\right)
Rewrite the square root of the division \sqrt{\frac{1}{8}} as the division of square roots \frac{\sqrt{1}}{\sqrt{8}}.
\frac{8\sqrt{3}-3\sqrt{2}}{3\times 2}-2\left(\frac{1}{\sqrt{8}}-\frac{1}{3}\sqrt{27}\right)
Calculate the square root of 1 and get 1.
\frac{8\sqrt{3}-3\sqrt{2}}{3\times 2}-2\left(\frac{1}{2\sqrt{2}}-\frac{1}{3}\sqrt{27}\right)
Factor 8=2^{2}\times 2. Rewrite the square root of the product \sqrt{2^{2}\times 2} as the product of square roots \sqrt{2^{2}}\sqrt{2}. Take the square root of 2^{2}.
\frac{8\sqrt{3}-3\sqrt{2}}{3\times 2}-2\left(\frac{\sqrt{2}}{2\left(\sqrt{2}\right)^{2}}-\frac{1}{3}\sqrt{27}\right)
Rationalize the denominator of \frac{1}{2\sqrt{2}} by multiplying numerator and denominator by \sqrt{2}.
\frac{8\sqrt{3}-3\sqrt{2}}{3\times 2}-2\left(\frac{\sqrt{2}}{2\times 2}-\frac{1}{3}\sqrt{27}\right)
The square of \sqrt{2} is 2.
\frac{8\sqrt{3}-3\sqrt{2}}{3\times 2}-2\left(\frac{\sqrt{2}}{4}-\frac{1}{3}\sqrt{27}\right)
Multiply 2 and 2 to get 4.
\frac{8\sqrt{3}-3\sqrt{2}}{3\times 2}-2\left(\frac{\sqrt{2}}{4}-\frac{1}{3}\times 3\sqrt{3}\right)
Factor 27=3^{2}\times 3. Rewrite the square root of the product \sqrt{3^{2}\times 3} as the product of square roots \sqrt{3^{2}}\sqrt{3}. Take the square root of 3^{2}.
\frac{8\sqrt{3}-3\sqrt{2}}{3\times 2}-2\left(\frac{\sqrt{2}}{4}-\sqrt{3}\right)
Cancel out 3 and 3.
\frac{8\sqrt{3}-3\sqrt{2}}{3\times 2}-2\left(\frac{\sqrt{2}}{4}-\frac{4\sqrt{3}}{4}\right)
To add or subtract expressions, expand them to make their denominators the same. Multiply \sqrt{3} times \frac{4}{4}.
\frac{8\sqrt{3}-3\sqrt{2}}{3\times 2}-2\times \frac{\sqrt{2}-4\sqrt{3}}{4}
Since \frac{\sqrt{2}}{4} and \frac{4\sqrt{3}}{4} have the same denominator, subtract them by subtracting their numerators.
\frac{8\sqrt{3}-3\sqrt{2}}{3\times 2}-\frac{\sqrt{2}-4\sqrt{3}}{2}
Cancel out 4, the greatest common factor in 2 and 4.
\frac{8\sqrt{3}-3\sqrt{2}}{2\times 3}-\frac{3\left(\sqrt{2}-4\sqrt{3}\right)}{2\times 3}
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 3\times 2 and 2 is 2\times 3. Multiply \frac{\sqrt{2}-4\sqrt{3}}{2} times \frac{3}{3}.
\frac{8\sqrt{3}-3\sqrt{2}-3\left(\sqrt{2}-4\sqrt{3}\right)}{2\times 3}
Since \frac{8\sqrt{3}-3\sqrt{2}}{2\times 3} and \frac{3\left(\sqrt{2}-4\sqrt{3}\right)}{2\times 3} have the same denominator, subtract them by subtracting their numerators.
\frac{8\sqrt{3}-3\sqrt{2}-3\sqrt{2}+12\sqrt{3}}{2\times 3}
Do the multiplications in 8\sqrt{3}-3\sqrt{2}-3\left(\sqrt{2}-4\sqrt{3}\right).
\frac{20\sqrt{3}-6\sqrt{2}}{2\times 3}
Do the calculations in 8\sqrt{3}-3\sqrt{2}-3\sqrt{2}+12\sqrt{3}.
\frac{20\sqrt{3}-6\sqrt{2}}{6}
Expand 2\times 3.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}