Skip to main content
Solve for x
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{1}{3}\left(\frac{1}{5x}-3\right)\times 30x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30x, the least common multiple of 3,5x,2,x.
\frac{1}{3}\left(\frac{1}{5x}-\frac{3\times 5x}{5x}\right)\times 30x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{5x}{5x}.
\frac{1}{3}\times \frac{1-3\times 5x}{5x}\times 30x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Since \frac{1}{5x} and \frac{3\times 5x}{5x} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}\times \frac{1-15x}{5x}\times 30x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Do the multiplications in 1-3\times 5x.
10\times \frac{1-15x}{5x}x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Multiply \frac{1}{3} and 30 to get 10.
\frac{10\left(1-15x\right)}{5x}x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Express 10\times \frac{1-15x}{5x} as a single fraction.
\frac{2\left(-15x+1\right)}{x}x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Cancel out 5 in both numerator and denominator.
\frac{2\left(-15x+1\right)x}{x}=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Express \frac{2\left(-15x+1\right)}{x}x as a single fraction.
\frac{2\left(-15x+1\right)x}{x}=\frac{1}{2}\left(\frac{2x}{x}-\frac{1}{x}\right)\times 30x
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x}{x}.
\frac{2\left(-15x+1\right)x}{x}=\frac{1}{2}\times \frac{2x-1}{x}\times 30x
Since \frac{2x}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{2\left(-15x+1\right)x}{x}=15\times \frac{2x-1}{x}x
Multiply \frac{1}{2} and 30 to get 15.
\frac{2\left(-15x+1\right)x}{x}=\frac{15\left(2x-1\right)}{x}x
Express 15\times \frac{2x-1}{x} as a single fraction.
\frac{2\left(-15x+1\right)x}{x}=\frac{15\left(2x-1\right)x}{x}
Express \frac{15\left(2x-1\right)}{x}x as a single fraction.
\frac{\left(-30x+2\right)x}{x}=\frac{15\left(2x-1\right)x}{x}
Use the distributive property to multiply 2 by -15x+1.
\frac{-30x^{2}+2x}{x}=\frac{15\left(2x-1\right)x}{x}
Use the distributive property to multiply -30x+2 by x.
\frac{-30x^{2}+2x}{x}=\frac{\left(30x-15\right)x}{x}
Use the distributive property to multiply 15 by 2x-1.
\frac{-30x^{2}+2x}{x}=\frac{30x^{2}-15x}{x}
Use the distributive property to multiply 30x-15 by x.
\frac{-30x^{2}+2x}{x}-\frac{30x^{2}-15x}{x}=0
Subtract \frac{30x^{2}-15x}{x} from both sides.
\frac{-30x^{2}+2x-\left(30x^{2}-15x\right)}{x}=0
Since \frac{-30x^{2}+2x}{x} and \frac{30x^{2}-15x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{-30x^{2}+2x-30x^{2}+15x}{x}=0
Do the multiplications in -30x^{2}+2x-\left(30x^{2}-15x\right).
\frac{-60x^{2}+17x}{x}=0
Combine like terms in -30x^{2}+2x-30x^{2}+15x.
-60x^{2}+17x=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x\left(-60x+17\right)=0
Factor out x.
x=0 x=\frac{17}{60}
To find equation solutions, solve x=0 and -60x+17=0.
x=\frac{17}{60}
Variable x cannot be equal to 0.
\frac{1}{3}\left(\frac{1}{5x}-3\right)\times 30x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30x, the least common multiple of 3,5x,2,x.
\frac{1}{3}\left(\frac{1}{5x}-\frac{3\times 5x}{5x}\right)\times 30x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{5x}{5x}.
\frac{1}{3}\times \frac{1-3\times 5x}{5x}\times 30x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Since \frac{1}{5x} and \frac{3\times 5x}{5x} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}\times \frac{1-15x}{5x}\times 30x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Do the multiplications in 1-3\times 5x.
10\times \frac{1-15x}{5x}x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Multiply \frac{1}{3} and 30 to get 10.
\frac{10\left(1-15x\right)}{5x}x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Express 10\times \frac{1-15x}{5x} as a single fraction.
\frac{2\left(-15x+1\right)}{x}x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Cancel out 5 in both numerator and denominator.
\frac{2\left(-15x+1\right)x}{x}=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Express \frac{2\left(-15x+1\right)}{x}x as a single fraction.
\frac{2\left(-15x+1\right)x}{x}=\frac{1}{2}\left(\frac{2x}{x}-\frac{1}{x}\right)\times 30x
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x}{x}.
\frac{2\left(-15x+1\right)x}{x}=\frac{1}{2}\times \frac{2x-1}{x}\times 30x
Since \frac{2x}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{2\left(-15x+1\right)x}{x}=15\times \frac{2x-1}{x}x
Multiply \frac{1}{2} and 30 to get 15.
\frac{2\left(-15x+1\right)x}{x}=\frac{15\left(2x-1\right)}{x}x
Express 15\times \frac{2x-1}{x} as a single fraction.
\frac{2\left(-15x+1\right)x}{x}=\frac{15\left(2x-1\right)x}{x}
Express \frac{15\left(2x-1\right)}{x}x as a single fraction.
\frac{\left(-30x+2\right)x}{x}=\frac{15\left(2x-1\right)x}{x}
Use the distributive property to multiply 2 by -15x+1.
\frac{-30x^{2}+2x}{x}=\frac{15\left(2x-1\right)x}{x}
Use the distributive property to multiply -30x+2 by x.
\frac{-30x^{2}+2x}{x}=\frac{\left(30x-15\right)x}{x}
Use the distributive property to multiply 15 by 2x-1.
\frac{-30x^{2}+2x}{x}=\frac{30x^{2}-15x}{x}
Use the distributive property to multiply 30x-15 by x.
\frac{-30x^{2}+2x}{x}-\frac{30x^{2}-15x}{x}=0
Subtract \frac{30x^{2}-15x}{x} from both sides.
\frac{-30x^{2}+2x-\left(30x^{2}-15x\right)}{x}=0
Since \frac{-30x^{2}+2x}{x} and \frac{30x^{2}-15x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{-30x^{2}+2x-30x^{2}+15x}{x}=0
Do the multiplications in -30x^{2}+2x-\left(30x^{2}-15x\right).
\frac{-60x^{2}+17x}{x}=0
Combine like terms in -30x^{2}+2x-30x^{2}+15x.
-60x^{2}+17x=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
x=\frac{-17±\sqrt{17^{2}}}{2\left(-60\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -60 for a, 17 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-17±17}{2\left(-60\right)}
Take the square root of 17^{2}.
x=\frac{-17±17}{-120}
Multiply 2 times -60.
x=\frac{0}{-120}
Now solve the equation x=\frac{-17±17}{-120} when ± is plus. Add -17 to 17.
x=0
Divide 0 by -120.
x=-\frac{34}{-120}
Now solve the equation x=\frac{-17±17}{-120} when ± is minus. Subtract 17 from -17.
x=\frac{17}{60}
Reduce the fraction \frac{-34}{-120} to lowest terms by extracting and canceling out 2.
x=0 x=\frac{17}{60}
The equation is now solved.
x=\frac{17}{60}
Variable x cannot be equal to 0.
\frac{1}{3}\left(\frac{1}{5x}-3\right)\times 30x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30x, the least common multiple of 3,5x,2,x.
\frac{1}{3}\left(\frac{1}{5x}-\frac{3\times 5x}{5x}\right)\times 30x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{5x}{5x}.
\frac{1}{3}\times \frac{1-3\times 5x}{5x}\times 30x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Since \frac{1}{5x} and \frac{3\times 5x}{5x} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}\times \frac{1-15x}{5x}\times 30x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Do the multiplications in 1-3\times 5x.
10\times \frac{1-15x}{5x}x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Multiply \frac{1}{3} and 30 to get 10.
\frac{10\left(1-15x\right)}{5x}x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Express 10\times \frac{1-15x}{5x} as a single fraction.
\frac{2\left(-15x+1\right)}{x}x=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Cancel out 5 in both numerator and denominator.
\frac{2\left(-15x+1\right)x}{x}=\frac{1}{2}\left(2-\frac{1}{x}\right)\times 30x
Express \frac{2\left(-15x+1\right)}{x}x as a single fraction.
\frac{2\left(-15x+1\right)x}{x}=\frac{1}{2}\left(\frac{2x}{x}-\frac{1}{x}\right)\times 30x
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{x}{x}.
\frac{2\left(-15x+1\right)x}{x}=\frac{1}{2}\times \frac{2x-1}{x}\times 30x
Since \frac{2x}{x} and \frac{1}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{2\left(-15x+1\right)x}{x}=15\times \frac{2x-1}{x}x
Multiply \frac{1}{2} and 30 to get 15.
\frac{2\left(-15x+1\right)x}{x}=\frac{15\left(2x-1\right)}{x}x
Express 15\times \frac{2x-1}{x} as a single fraction.
\frac{2\left(-15x+1\right)x}{x}=\frac{15\left(2x-1\right)x}{x}
Express \frac{15\left(2x-1\right)}{x}x as a single fraction.
\frac{\left(-30x+2\right)x}{x}=\frac{15\left(2x-1\right)x}{x}
Use the distributive property to multiply 2 by -15x+1.
\frac{-30x^{2}+2x}{x}=\frac{15\left(2x-1\right)x}{x}
Use the distributive property to multiply -30x+2 by x.
\frac{-30x^{2}+2x}{x}=\frac{\left(30x-15\right)x}{x}
Use the distributive property to multiply 15 by 2x-1.
\frac{-30x^{2}+2x}{x}=\frac{30x^{2}-15x}{x}
Use the distributive property to multiply 30x-15 by x.
\frac{-30x^{2}+2x}{x}-\frac{30x^{2}-15x}{x}=0
Subtract \frac{30x^{2}-15x}{x} from both sides.
\frac{-30x^{2}+2x-\left(30x^{2}-15x\right)}{x}=0
Since \frac{-30x^{2}+2x}{x} and \frac{30x^{2}-15x}{x} have the same denominator, subtract them by subtracting their numerators.
\frac{-30x^{2}+2x-30x^{2}+15x}{x}=0
Do the multiplications in -30x^{2}+2x-\left(30x^{2}-15x\right).
\frac{-60x^{2}+17x}{x}=0
Combine like terms in -30x^{2}+2x-30x^{2}+15x.
-60x^{2}+17x=0
Variable x cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by x.
\frac{-60x^{2}+17x}{-60}=\frac{0}{-60}
Divide both sides by -60.
x^{2}+\frac{17}{-60}x=\frac{0}{-60}
Dividing by -60 undoes the multiplication by -60.
x^{2}-\frac{17}{60}x=\frac{0}{-60}
Divide 17 by -60.
x^{2}-\frac{17}{60}x=0
Divide 0 by -60.
x^{2}-\frac{17}{60}x+\left(-\frac{17}{120}\right)^{2}=\left(-\frac{17}{120}\right)^{2}
Divide -\frac{17}{60}, the coefficient of the x term, by 2 to get -\frac{17}{120}. Then add the square of -\frac{17}{120} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-\frac{17}{60}x+\frac{289}{14400}=\frac{289}{14400}
Square -\frac{17}{120} by squaring both the numerator and the denominator of the fraction.
\left(x-\frac{17}{120}\right)^{2}=\frac{289}{14400}
Factor x^{2}-\frac{17}{60}x+\frac{289}{14400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-\frac{17}{120}\right)^{2}}=\sqrt{\frac{289}{14400}}
Take the square root of both sides of the equation.
x-\frac{17}{120}=\frac{17}{120} x-\frac{17}{120}=-\frac{17}{120}
Simplify.
x=\frac{17}{60} x=0
Add \frac{17}{120} to both sides of the equation.
x=\frac{17}{60}
Variable x cannot be equal to 0.