Skip to main content
Solve for n
Tick mark Image

Similar Problems from Web Search

Share

\frac{1}{3}\left(\frac{1}{5n}-3\right)\times 30n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30n, the least common multiple of 3,5n,2,n.
\frac{1}{3}\left(\frac{1}{5n}-\frac{3\times 5n}{5n}\right)\times 30n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{5n}{5n}.
\frac{1}{3}\times \frac{1-3\times 5n}{5n}\times 30n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Since \frac{1}{5n} and \frac{3\times 5n}{5n} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}\times \frac{1-15n}{5n}\times 30n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Do the multiplications in 1-3\times 5n.
10\times \frac{1-15n}{5n}n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Multiply \frac{1}{3} and 30 to get 10.
\frac{10\left(1-15n\right)}{5n}n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Express 10\times \frac{1-15n}{5n} as a single fraction.
\frac{2\left(-15n+1\right)}{n}n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Cancel out 5 in both numerator and denominator.
\frac{2\left(-15n+1\right)n}{n}=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Express \frac{2\left(-15n+1\right)}{n}n as a single fraction.
\frac{2\left(-15n+1\right)n}{n}=\frac{1}{2}\left(\frac{2n}{n}-\frac{1}{n}\right)\times 30n
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{n}{n}.
\frac{2\left(-15n+1\right)n}{n}=\frac{1}{2}\times \frac{2n-1}{n}\times 30n
Since \frac{2n}{n} and \frac{1}{n} have the same denominator, subtract them by subtracting their numerators.
\frac{2\left(-15n+1\right)n}{n}=15\times \frac{2n-1}{n}n
Multiply \frac{1}{2} and 30 to get 15.
\frac{2\left(-15n+1\right)n}{n}=\frac{15\left(2n-1\right)}{n}n
Express 15\times \frac{2n-1}{n} as a single fraction.
\frac{2\left(-15n+1\right)n}{n}=\frac{15\left(2n-1\right)n}{n}
Express \frac{15\left(2n-1\right)}{n}n as a single fraction.
\frac{\left(-30n+2\right)n}{n}=\frac{15\left(2n-1\right)n}{n}
Use the distributive property to multiply 2 by -15n+1.
\frac{-30n^{2}+2n}{n}=\frac{15\left(2n-1\right)n}{n}
Use the distributive property to multiply -30n+2 by n.
\frac{-30n^{2}+2n}{n}=\frac{\left(30n-15\right)n}{n}
Use the distributive property to multiply 15 by 2n-1.
\frac{-30n^{2}+2n}{n}=\frac{30n^{2}-15n}{n}
Use the distributive property to multiply 30n-15 by n.
\frac{-30n^{2}+2n}{n}-\frac{30n^{2}-15n}{n}=0
Subtract \frac{30n^{2}-15n}{n} from both sides.
\frac{-30n^{2}+2n-\left(30n^{2}-15n\right)}{n}=0
Since \frac{-30n^{2}+2n}{n} and \frac{30n^{2}-15n}{n} have the same denominator, subtract them by subtracting their numerators.
\frac{-30n^{2}+2n-30n^{2}+15n}{n}=0
Do the multiplications in -30n^{2}+2n-\left(30n^{2}-15n\right).
\frac{-60n^{2}+17n}{n}=0
Combine like terms in -30n^{2}+2n-30n^{2}+15n.
-60n^{2}+17n=0
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n.
n\left(-60n+17\right)=0
Factor out n.
n=0 n=\frac{17}{60}
To find equation solutions, solve n=0 and -60n+17=0.
n=\frac{17}{60}
Variable n cannot be equal to 0.
\frac{1}{3}\left(\frac{1}{5n}-3\right)\times 30n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30n, the least common multiple of 3,5n,2,n.
\frac{1}{3}\left(\frac{1}{5n}-\frac{3\times 5n}{5n}\right)\times 30n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{5n}{5n}.
\frac{1}{3}\times \frac{1-3\times 5n}{5n}\times 30n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Since \frac{1}{5n} and \frac{3\times 5n}{5n} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}\times \frac{1-15n}{5n}\times 30n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Do the multiplications in 1-3\times 5n.
10\times \frac{1-15n}{5n}n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Multiply \frac{1}{3} and 30 to get 10.
\frac{10\left(1-15n\right)}{5n}n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Express 10\times \frac{1-15n}{5n} as a single fraction.
\frac{2\left(-15n+1\right)}{n}n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Cancel out 5 in both numerator and denominator.
\frac{2\left(-15n+1\right)n}{n}=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Express \frac{2\left(-15n+1\right)}{n}n as a single fraction.
\frac{2\left(-15n+1\right)n}{n}=\frac{1}{2}\left(\frac{2n}{n}-\frac{1}{n}\right)\times 30n
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{n}{n}.
\frac{2\left(-15n+1\right)n}{n}=\frac{1}{2}\times \frac{2n-1}{n}\times 30n
Since \frac{2n}{n} and \frac{1}{n} have the same denominator, subtract them by subtracting their numerators.
\frac{2\left(-15n+1\right)n}{n}=15\times \frac{2n-1}{n}n
Multiply \frac{1}{2} and 30 to get 15.
\frac{2\left(-15n+1\right)n}{n}=\frac{15\left(2n-1\right)}{n}n
Express 15\times \frac{2n-1}{n} as a single fraction.
\frac{2\left(-15n+1\right)n}{n}=\frac{15\left(2n-1\right)n}{n}
Express \frac{15\left(2n-1\right)}{n}n as a single fraction.
\frac{\left(-30n+2\right)n}{n}=\frac{15\left(2n-1\right)n}{n}
Use the distributive property to multiply 2 by -15n+1.
\frac{-30n^{2}+2n}{n}=\frac{15\left(2n-1\right)n}{n}
Use the distributive property to multiply -30n+2 by n.
\frac{-30n^{2}+2n}{n}=\frac{\left(30n-15\right)n}{n}
Use the distributive property to multiply 15 by 2n-1.
\frac{-30n^{2}+2n}{n}=\frac{30n^{2}-15n}{n}
Use the distributive property to multiply 30n-15 by n.
\frac{-30n^{2}+2n}{n}-\frac{30n^{2}-15n}{n}=0
Subtract \frac{30n^{2}-15n}{n} from both sides.
\frac{-30n^{2}+2n-\left(30n^{2}-15n\right)}{n}=0
Since \frac{-30n^{2}+2n}{n} and \frac{30n^{2}-15n}{n} have the same denominator, subtract them by subtracting their numerators.
\frac{-30n^{2}+2n-30n^{2}+15n}{n}=0
Do the multiplications in -30n^{2}+2n-\left(30n^{2}-15n\right).
\frac{-60n^{2}+17n}{n}=0
Combine like terms in -30n^{2}+2n-30n^{2}+15n.
-60n^{2}+17n=0
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n.
n=\frac{-17±\sqrt{17^{2}}}{2\left(-60\right)}
This equation is in standard form: ax^{2}+bx+c=0. Substitute -60 for a, 17 for b, and 0 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
n=\frac{-17±17}{2\left(-60\right)}
Take the square root of 17^{2}.
n=\frac{-17±17}{-120}
Multiply 2 times -60.
n=\frac{0}{-120}
Now solve the equation n=\frac{-17±17}{-120} when ± is plus. Add -17 to 17.
n=0
Divide 0 by -120.
n=-\frac{34}{-120}
Now solve the equation n=\frac{-17±17}{-120} when ± is minus. Subtract 17 from -17.
n=\frac{17}{60}
Reduce the fraction \frac{-34}{-120} to lowest terms by extracting and canceling out 2.
n=0 n=\frac{17}{60}
The equation is now solved.
n=\frac{17}{60}
Variable n cannot be equal to 0.
\frac{1}{3}\left(\frac{1}{5n}-3\right)\times 30n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by 30n, the least common multiple of 3,5n,2,n.
\frac{1}{3}\left(\frac{1}{5n}-\frac{3\times 5n}{5n}\right)\times 30n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
To add or subtract expressions, expand them to make their denominators the same. Multiply 3 times \frac{5n}{5n}.
\frac{1}{3}\times \frac{1-3\times 5n}{5n}\times 30n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Since \frac{1}{5n} and \frac{3\times 5n}{5n} have the same denominator, subtract them by subtracting their numerators.
\frac{1}{3}\times \frac{1-15n}{5n}\times 30n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Do the multiplications in 1-3\times 5n.
10\times \frac{1-15n}{5n}n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Multiply \frac{1}{3} and 30 to get 10.
\frac{10\left(1-15n\right)}{5n}n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Express 10\times \frac{1-15n}{5n} as a single fraction.
\frac{2\left(-15n+1\right)}{n}n=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Cancel out 5 in both numerator and denominator.
\frac{2\left(-15n+1\right)n}{n}=\frac{1}{2}\left(2-\frac{1}{n}\right)\times 30n
Express \frac{2\left(-15n+1\right)}{n}n as a single fraction.
\frac{2\left(-15n+1\right)n}{n}=\frac{1}{2}\left(\frac{2n}{n}-\frac{1}{n}\right)\times 30n
To add or subtract expressions, expand them to make their denominators the same. Multiply 2 times \frac{n}{n}.
\frac{2\left(-15n+1\right)n}{n}=\frac{1}{2}\times \frac{2n-1}{n}\times 30n
Since \frac{2n}{n} and \frac{1}{n} have the same denominator, subtract them by subtracting their numerators.
\frac{2\left(-15n+1\right)n}{n}=15\times \frac{2n-1}{n}n
Multiply \frac{1}{2} and 30 to get 15.
\frac{2\left(-15n+1\right)n}{n}=\frac{15\left(2n-1\right)}{n}n
Express 15\times \frac{2n-1}{n} as a single fraction.
\frac{2\left(-15n+1\right)n}{n}=\frac{15\left(2n-1\right)n}{n}
Express \frac{15\left(2n-1\right)}{n}n as a single fraction.
\frac{\left(-30n+2\right)n}{n}=\frac{15\left(2n-1\right)n}{n}
Use the distributive property to multiply 2 by -15n+1.
\frac{-30n^{2}+2n}{n}=\frac{15\left(2n-1\right)n}{n}
Use the distributive property to multiply -30n+2 by n.
\frac{-30n^{2}+2n}{n}=\frac{\left(30n-15\right)n}{n}
Use the distributive property to multiply 15 by 2n-1.
\frac{-30n^{2}+2n}{n}=\frac{30n^{2}-15n}{n}
Use the distributive property to multiply 30n-15 by n.
\frac{-30n^{2}+2n}{n}-\frac{30n^{2}-15n}{n}=0
Subtract \frac{30n^{2}-15n}{n} from both sides.
\frac{-30n^{2}+2n-\left(30n^{2}-15n\right)}{n}=0
Since \frac{-30n^{2}+2n}{n} and \frac{30n^{2}-15n}{n} have the same denominator, subtract them by subtracting their numerators.
\frac{-30n^{2}+2n-30n^{2}+15n}{n}=0
Do the multiplications in -30n^{2}+2n-\left(30n^{2}-15n\right).
\frac{-60n^{2}+17n}{n}=0
Combine like terms in -30n^{2}+2n-30n^{2}+15n.
-60n^{2}+17n=0
Variable n cannot be equal to 0 since division by zero is not defined. Multiply both sides of the equation by n.
\frac{-60n^{2}+17n}{-60}=\frac{0}{-60}
Divide both sides by -60.
n^{2}+\frac{17}{-60}n=\frac{0}{-60}
Dividing by -60 undoes the multiplication by -60.
n^{2}-\frac{17}{60}n=\frac{0}{-60}
Divide 17 by -60.
n^{2}-\frac{17}{60}n=0
Divide 0 by -60.
n^{2}-\frac{17}{60}n+\left(-\frac{17}{120}\right)^{2}=\left(-\frac{17}{120}\right)^{2}
Divide -\frac{17}{60}, the coefficient of the x term, by 2 to get -\frac{17}{120}. Then add the square of -\frac{17}{120} to both sides of the equation. This step makes the left hand side of the equation a perfect square.
n^{2}-\frac{17}{60}n+\frac{289}{14400}=\frac{289}{14400}
Square -\frac{17}{120} by squaring both the numerator and the denominator of the fraction.
\left(n-\frac{17}{120}\right)^{2}=\frac{289}{14400}
Factor n^{2}-\frac{17}{60}n+\frac{289}{14400}. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(n-\frac{17}{120}\right)^{2}}=\sqrt{\frac{289}{14400}}
Take the square root of both sides of the equation.
n-\frac{17}{120}=\frac{17}{120} n-\frac{17}{120}=-\frac{17}{120}
Simplify.
n=\frac{17}{60} n=0
Add \frac{17}{120} to both sides of the equation.
n=\frac{17}{60}
Variable n cannot be equal to 0.