Evaluate
\frac{1}{\left(2-x\right)\left(x+1\right)}
Expand
\frac{1}{\left(2-x\right)\left(x+1\right)}
Graph
Quiz
Polynomial
5 problems similar to:
\frac { 1 } { 3 } ( \frac { 1 } { 2 - x } + \frac { 1 } { 1 + x } )
Share
Copied to clipboard
\frac{1}{3}\left(\frac{x+1}{\left(x+1\right)\left(-x+2\right)}+\frac{-x+2}{\left(x+1\right)\left(-x+2\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2-x and 1+x is \left(x+1\right)\left(-x+2\right). Multiply \frac{1}{2-x} times \frac{x+1}{x+1}. Multiply \frac{1}{1+x} times \frac{-x+2}{-x+2}.
\frac{1}{3}\times \frac{x+1-x+2}{\left(x+1\right)\left(-x+2\right)}
Since \frac{x+1}{\left(x+1\right)\left(-x+2\right)} and \frac{-x+2}{\left(x+1\right)\left(-x+2\right)} have the same denominator, add them by adding their numerators.
\frac{1}{3}\times \frac{3}{\left(x+1\right)\left(-x+2\right)}
Combine like terms in x+1-x+2.
\frac{3}{3\left(x+1\right)\left(-x+2\right)}
Multiply \frac{1}{3} times \frac{3}{\left(x+1\right)\left(-x+2\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{\left(3x+3\right)\left(-x+2\right)}
Use the distributive property to multiply 3 by x+1.
\frac{3}{-3x^{2}+6x-3x+6}
Apply the distributive property by multiplying each term of 3x+3 by each term of -x+2.
\frac{3}{-3x^{2}+3x+6}
Combine 6x and -3x to get 3x.
\frac{1}{3}\left(\frac{x+1}{\left(x+1\right)\left(-x+2\right)}+\frac{-x+2}{\left(x+1\right)\left(-x+2\right)}\right)
To add or subtract expressions, expand them to make their denominators the same. Least common multiple of 2-x and 1+x is \left(x+1\right)\left(-x+2\right). Multiply \frac{1}{2-x} times \frac{x+1}{x+1}. Multiply \frac{1}{1+x} times \frac{-x+2}{-x+2}.
\frac{1}{3}\times \frac{x+1-x+2}{\left(x+1\right)\left(-x+2\right)}
Since \frac{x+1}{\left(x+1\right)\left(-x+2\right)} and \frac{-x+2}{\left(x+1\right)\left(-x+2\right)} have the same denominator, add them by adding their numerators.
\frac{1}{3}\times \frac{3}{\left(x+1\right)\left(-x+2\right)}
Combine like terms in x+1-x+2.
\frac{3}{3\left(x+1\right)\left(-x+2\right)}
Multiply \frac{1}{3} times \frac{3}{\left(x+1\right)\left(-x+2\right)} by multiplying numerator times numerator and denominator times denominator.
\frac{3}{\left(3x+3\right)\left(-x+2\right)}
Use the distributive property to multiply 3 by x+1.
\frac{3}{-3x^{2}+6x-3x+6}
Apply the distributive property by multiplying each term of 3x+3 by each term of -x+2.
\frac{3}{-3x^{2}+3x+6}
Combine 6x and -3x to get 3x.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}