Solve for x (complex solution)
x=\frac{5\sqrt{6}i}{2}+5\approx 5+6.123724357i
x=-\frac{5\sqrt{6}i}{2}+5\approx 5-6.123724357i
Graph
Share
Copied to clipboard
\frac{10}{3}\left(x^{2}-10x+100\right)=125
Multiply \frac{1}{3} and 10 to get \frac{10}{3}.
\frac{10}{3}x^{2}-\frac{100}{3}x+\frac{1000}{3}=125
Use the distributive property to multiply \frac{10}{3} by x^{2}-10x+100.
\frac{10}{3}x^{2}-\frac{100}{3}x+\frac{1000}{3}-125=0
Subtract 125 from both sides.
\frac{10}{3}x^{2}-\frac{100}{3}x+\frac{625}{3}=0
Subtract 125 from \frac{1000}{3} to get \frac{625}{3}.
x=\frac{-\left(-\frac{100}{3}\right)±\sqrt{\left(-\frac{100}{3}\right)^{2}-4\times \frac{10}{3}\times \frac{625}{3}}}{2\times \frac{10}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{10}{3} for a, -\frac{100}{3} for b, and \frac{625}{3} for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{100}{3}\right)±\sqrt{\frac{10000}{9}-4\times \frac{10}{3}\times \frac{625}{3}}}{2\times \frac{10}{3}}
Square -\frac{100}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{100}{3}\right)±\sqrt{\frac{10000}{9}-\frac{40}{3}\times \frac{625}{3}}}{2\times \frac{10}{3}}
Multiply -4 times \frac{10}{3}.
x=\frac{-\left(-\frac{100}{3}\right)±\sqrt{\frac{10000-25000}{9}}}{2\times \frac{10}{3}}
Multiply -\frac{40}{3} times \frac{625}{3} by multiplying numerator times numerator and denominator times denominator. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{100}{3}\right)±\sqrt{-\frac{5000}{3}}}{2\times \frac{10}{3}}
Add \frac{10000}{9} to -\frac{25000}{9} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{100}{3}\right)±\frac{50\sqrt{6}i}{3}}{2\times \frac{10}{3}}
Take the square root of -\frac{5000}{3}.
x=\frac{\frac{100}{3}±\frac{50\sqrt{6}i}{3}}{2\times \frac{10}{3}}
The opposite of -\frac{100}{3} is \frac{100}{3}.
x=\frac{\frac{100}{3}±\frac{50\sqrt{6}i}{3}}{\frac{20}{3}}
Multiply 2 times \frac{10}{3}.
x=\frac{100+50\sqrt{6}i}{3\times \frac{20}{3}}
Now solve the equation x=\frac{\frac{100}{3}±\frac{50\sqrt{6}i}{3}}{\frac{20}{3}} when ± is plus. Add \frac{100}{3} to \frac{50i\sqrt{6}}{3}.
x=\frac{5\sqrt{6}i}{2}+5
Divide \frac{100+50i\sqrt{6}}{3} by \frac{20}{3} by multiplying \frac{100+50i\sqrt{6}}{3} by the reciprocal of \frac{20}{3}.
x=\frac{-50\sqrt{6}i+100}{3\times \frac{20}{3}}
Now solve the equation x=\frac{\frac{100}{3}±\frac{50\sqrt{6}i}{3}}{\frac{20}{3}} when ± is minus. Subtract \frac{50i\sqrt{6}}{3} from \frac{100}{3}.
x=-\frac{5\sqrt{6}i}{2}+5
Divide \frac{100-50i\sqrt{6}}{3} by \frac{20}{3} by multiplying \frac{100-50i\sqrt{6}}{3} by the reciprocal of \frac{20}{3}.
x=\frac{5\sqrt{6}i}{2}+5 x=-\frac{5\sqrt{6}i}{2}+5
The equation is now solved.
\frac{10}{3}\left(x^{2}-10x+100\right)=125
Multiply \frac{1}{3} and 10 to get \frac{10}{3}.
\frac{10}{3}x^{2}-\frac{100}{3}x+\frac{1000}{3}=125
Use the distributive property to multiply \frac{10}{3} by x^{2}-10x+100.
\frac{10}{3}x^{2}-\frac{100}{3}x=125-\frac{1000}{3}
Subtract \frac{1000}{3} from both sides.
\frac{10}{3}x^{2}-\frac{100}{3}x=-\frac{625}{3}
Subtract \frac{1000}{3} from 125 to get -\frac{625}{3}.
\frac{\frac{10}{3}x^{2}-\frac{100}{3}x}{\frac{10}{3}}=-\frac{\frac{625}{3}}{\frac{10}{3}}
Divide both sides of the equation by \frac{10}{3}, which is the same as multiplying both sides by the reciprocal of the fraction.
x^{2}+\left(-\frac{\frac{100}{3}}{\frac{10}{3}}\right)x=-\frac{\frac{625}{3}}{\frac{10}{3}}
Dividing by \frac{10}{3} undoes the multiplication by \frac{10}{3}.
x^{2}-10x=-\frac{\frac{625}{3}}{\frac{10}{3}}
Divide -\frac{100}{3} by \frac{10}{3} by multiplying -\frac{100}{3} by the reciprocal of \frac{10}{3}.
x^{2}-10x=-\frac{125}{2}
Divide -\frac{625}{3} by \frac{10}{3} by multiplying -\frac{625}{3} by the reciprocal of \frac{10}{3}.
x^{2}-10x+\left(-5\right)^{2}=-\frac{125}{2}+\left(-5\right)^{2}
Divide -10, the coefficient of the x term, by 2 to get -5. Then add the square of -5 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-10x+25=-\frac{125}{2}+25
Square -5.
x^{2}-10x+25=-\frac{75}{2}
Add -\frac{125}{2} to 25.
\left(x-5\right)^{2}=-\frac{75}{2}
Factor x^{2}-10x+25. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-5\right)^{2}}=\sqrt{-\frac{75}{2}}
Take the square root of both sides of the equation.
x-5=\frac{5\sqrt{6}i}{2} x-5=-\frac{5\sqrt{6}i}{2}
Simplify.
x=\frac{5\sqrt{6}i}{2}+5 x=-\frac{5\sqrt{6}i}{2}+5
Add 5 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}