Skip to main content
Solve for y
Tick mark Image
Graph

Similar Problems from Web Search

Share

\frac{14}{3}\times 14\times 25-\frac{1}{3}\times 7\times 7y=81
Multiply \frac{1}{3} and 14 to get \frac{14}{3}.
\frac{14\times 14}{3}\times 25-\frac{1}{3}\times 7\times 7y=81
Express \frac{14}{3}\times 14 as a single fraction.
\frac{196}{3}\times 25-\frac{1}{3}\times 7\times 7y=81
Multiply 14 and 14 to get 196.
\frac{196\times 25}{3}-\frac{1}{3}\times 7\times 7y=81
Express \frac{196}{3}\times 25 as a single fraction.
\frac{4900}{3}-\frac{1}{3}\times 7\times 7y=81
Multiply 196 and 25 to get 4900.
\frac{4900}{3}-\frac{7}{3}\times 7y=81
Multiply \frac{1}{3} and 7 to get \frac{7}{3}.
\frac{4900}{3}-\frac{7\times 7}{3}y=81
Express \frac{7}{3}\times 7 as a single fraction.
\frac{4900}{3}-\frac{49}{3}y=81
Multiply 7 and 7 to get 49.
-\frac{49}{3}y=81-\frac{4900}{3}
Subtract \frac{4900}{3} from both sides.
-\frac{49}{3}y=\frac{243}{3}-\frac{4900}{3}
Convert 81 to fraction \frac{243}{3}.
-\frac{49}{3}y=\frac{243-4900}{3}
Since \frac{243}{3} and \frac{4900}{3} have the same denominator, subtract them by subtracting their numerators.
-\frac{49}{3}y=-\frac{4657}{3}
Subtract 4900 from 243 to get -4657.
y=-\frac{4657}{3}\left(-\frac{3}{49}\right)
Multiply both sides by -\frac{3}{49}, the reciprocal of -\frac{49}{3}.
y=\frac{-4657\left(-3\right)}{3\times 49}
Multiply -\frac{4657}{3} times -\frac{3}{49} by multiplying numerator times numerator and denominator times denominator.
y=\frac{13971}{147}
Do the multiplications in the fraction \frac{-4657\left(-3\right)}{3\times 49}.
y=\frac{4657}{49}
Reduce the fraction \frac{13971}{147} to lowest terms by extracting and canceling out 3.