Solve for x
x=-3
x=5
Graph
Share
Copied to clipboard
\frac{1}{3}xx+\frac{1}{3}x\left(-2\right)=5
Use the distributive property to multiply \frac{1}{3}x by x-2.
\frac{1}{3}x^{2}+\frac{1}{3}x\left(-2\right)=5
Multiply x and x to get x^{2}.
\frac{1}{3}x^{2}+\frac{-2}{3}x=5
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
\frac{1}{3}x^{2}-\frac{2}{3}x=5
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{1}{3}x^{2}-\frac{2}{3}x-5=0
Subtract 5 from both sides.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\left(-\frac{2}{3}\right)^{2}-4\times \frac{1}{3}\left(-5\right)}}{2\times \frac{1}{3}}
This equation is in standard form: ax^{2}+bx+c=0. Substitute \frac{1}{3} for a, -\frac{2}{3} for b, and -5 for c in the quadratic formula, \frac{-b±\sqrt{b^{2}-4ac}}{2a}.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}-4\times \frac{1}{3}\left(-5\right)}}{2\times \frac{1}{3}}
Square -\frac{2}{3} by squaring both the numerator and the denominator of the fraction.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}-\frac{4}{3}\left(-5\right)}}{2\times \frac{1}{3}}
Multiply -4 times \frac{1}{3}.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{4}{9}+\frac{20}{3}}}{2\times \frac{1}{3}}
Multiply -\frac{4}{3} times -5.
x=\frac{-\left(-\frac{2}{3}\right)±\sqrt{\frac{64}{9}}}{2\times \frac{1}{3}}
Add \frac{4}{9} to \frac{20}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=\frac{-\left(-\frac{2}{3}\right)±\frac{8}{3}}{2\times \frac{1}{3}}
Take the square root of \frac{64}{9}.
x=\frac{\frac{2}{3}±\frac{8}{3}}{2\times \frac{1}{3}}
The opposite of -\frac{2}{3} is \frac{2}{3}.
x=\frac{\frac{2}{3}±\frac{8}{3}}{\frac{2}{3}}
Multiply 2 times \frac{1}{3}.
x=\frac{\frac{10}{3}}{\frac{2}{3}}
Now solve the equation x=\frac{\frac{2}{3}±\frac{8}{3}}{\frac{2}{3}} when ± is plus. Add \frac{2}{3} to \frac{8}{3} by finding a common denominator and adding the numerators. Then reduce the fraction to lowest terms if possible.
x=5
Divide \frac{10}{3} by \frac{2}{3} by multiplying \frac{10}{3} by the reciprocal of \frac{2}{3}.
x=-\frac{2}{\frac{2}{3}}
Now solve the equation x=\frac{\frac{2}{3}±\frac{8}{3}}{\frac{2}{3}} when ± is minus. Subtract \frac{8}{3} from \frac{2}{3} by finding a common denominator and subtracting the numerators. Then reduce the fraction to lowest terms if possible.
x=-3
Divide -2 by \frac{2}{3} by multiplying -2 by the reciprocal of \frac{2}{3}.
x=5 x=-3
The equation is now solved.
\frac{1}{3}xx+\frac{1}{3}x\left(-2\right)=5
Use the distributive property to multiply \frac{1}{3}x by x-2.
\frac{1}{3}x^{2}+\frac{1}{3}x\left(-2\right)=5
Multiply x and x to get x^{2}.
\frac{1}{3}x^{2}+\frac{-2}{3}x=5
Multiply \frac{1}{3} and -2 to get \frac{-2}{3}.
\frac{1}{3}x^{2}-\frac{2}{3}x=5
Fraction \frac{-2}{3} can be rewritten as -\frac{2}{3} by extracting the negative sign.
\frac{\frac{1}{3}x^{2}-\frac{2}{3}x}{\frac{1}{3}}=\frac{5}{\frac{1}{3}}
Multiply both sides by 3.
x^{2}+\left(-\frac{\frac{2}{3}}{\frac{1}{3}}\right)x=\frac{5}{\frac{1}{3}}
Dividing by \frac{1}{3} undoes the multiplication by \frac{1}{3}.
x^{2}-2x=\frac{5}{\frac{1}{3}}
Divide -\frac{2}{3} by \frac{1}{3} by multiplying -\frac{2}{3} by the reciprocal of \frac{1}{3}.
x^{2}-2x=15
Divide 5 by \frac{1}{3} by multiplying 5 by the reciprocal of \frac{1}{3}.
x^{2}-2x+1=15+1
Divide -2, the coefficient of the x term, by 2 to get -1. Then add the square of -1 to both sides of the equation. This step makes the left hand side of the equation a perfect square.
x^{2}-2x+1=16
Add 15 to 1.
\left(x-1\right)^{2}=16
Factor x^{2}-2x+1. In general, when x^{2}+bx+c is a perfect square, it can always be factored as \left(x+\frac{b}{2}\right)^{2}.
\sqrt{\left(x-1\right)^{2}}=\sqrt{16}
Take the square root of both sides of the equation.
x-1=4 x-1=-4
Simplify.
x=5 x=-3
Add 1 to both sides of the equation.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}