Evaluate
\frac{148}{5}=29.6
Factor
\frac{2 ^ {2} \cdot 37}{5} = 29\frac{3}{5} = 29.6
Share
Copied to clipboard
\frac{6}{3}+\frac{4}{3}\times \frac{21}{28}+\frac{3\times 2+1}{2}\times \frac{7\times 5+3}{5}
Multiply \frac{1}{3} and 6 to get \frac{6}{3}.
2+\frac{4}{3}\times \frac{21}{28}+\frac{3\times 2+1}{2}\times \frac{7\times 5+3}{5}
Divide 6 by 3 to get 2.
2+\frac{4}{3}\times \frac{3}{4}+\frac{3\times 2+1}{2}\times \frac{7\times 5+3}{5}
Reduce the fraction \frac{21}{28} to lowest terms by extracting and canceling out 7.
2+1+\frac{3\times 2+1}{2}\times \frac{7\times 5+3}{5}
Cancel out \frac{4}{3} and its reciprocal \frac{3}{4}.
3+\frac{3\times 2+1}{2}\times \frac{7\times 5+3}{5}
Add 2 and 1 to get 3.
3+\frac{6+1}{2}\times \frac{7\times 5+3}{5}
Multiply 3 and 2 to get 6.
3+\frac{7}{2}\times \frac{7\times 5+3}{5}
Add 6 and 1 to get 7.
3+\frac{7}{2}\times \frac{35+3}{5}
Multiply 7 and 5 to get 35.
3+\frac{7}{2}\times \frac{38}{5}
Add 35 and 3 to get 38.
3+\frac{7\times 38}{2\times 5}
Multiply \frac{7}{2} times \frac{38}{5} by multiplying numerator times numerator and denominator times denominator.
3+\frac{266}{10}
Do the multiplications in the fraction \frac{7\times 38}{2\times 5}.
3+\frac{133}{5}
Reduce the fraction \frac{266}{10} to lowest terms by extracting and canceling out 2.
\frac{15}{5}+\frac{133}{5}
Convert 3 to fraction \frac{15}{5}.
\frac{15+133}{5}
Since \frac{15}{5} and \frac{133}{5} have the same denominator, add them by adding their numerators.
\frac{148}{5}
Add 15 and 133 to get 148.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}