\frac { 1 } { 3 } \cdot 2,4 + 4,8 : 2 \frac { 2 } { 5 } =
Evaluate
2,8
Factor
\frac{2 \cdot 7}{5} = 2\frac{4}{5} = 2.8
Share
Copied to clipboard
\frac{1}{3}\times \frac{12}{5}+\frac{4,8}{\frac{2\times 5+2}{5}}
Convert decimal number 2,4 to fraction \frac{24}{10}. Reduce the fraction \frac{24}{10} to lowest terms by extracting and canceling out 2.
\frac{1\times 12}{3\times 5}+\frac{4,8}{\frac{2\times 5+2}{5}}
Multiply \frac{1}{3} times \frac{12}{5} by multiplying numerator times numerator and denominator times denominator.
\frac{12}{15}+\frac{4,8}{\frac{2\times 5+2}{5}}
Do the multiplications in the fraction \frac{1\times 12}{3\times 5}.
\frac{4}{5}+\frac{4,8}{\frac{2\times 5+2}{5}}
Reduce the fraction \frac{12}{15} to lowest terms by extracting and canceling out 3.
\frac{4}{5}+\frac{4,8\times 5}{2\times 5+2}
Divide 4,8 by \frac{2\times 5+2}{5} by multiplying 4,8 by the reciprocal of \frac{2\times 5+2}{5}.
\frac{4}{5}+\frac{24}{2\times 5+2}
Multiply 4,8 and 5 to get 24.
\frac{4}{5}+\frac{24}{10+2}
Multiply 2 and 5 to get 10.
\frac{4}{5}+\frac{24}{12}
Add 10 and 2 to get 12.
\frac{4}{5}+2
Divide 24 by 12 to get 2.
\frac{4}{5}+\frac{10}{5}
Convert 2 to fraction \frac{10}{5}.
\frac{4+10}{5}
Since \frac{4}{5} and \frac{10}{5} have the same denominator, add them by adding their numerators.
\frac{14}{5}
Add 4 and 10 to get 14.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}