\frac { 1 } { 3 } \cdot 0,1 \cdot ( - \frac { 1 } { 4 } ) \cdot ( - 12 )
Evaluate
0,1
Factor
\frac{1}{2 \cdot 5} = 0.1
Share
Copied to clipboard
\frac{1}{3}\times \frac{1}{10}\left(-\frac{1}{4}\right)\left(-12\right)
Convert decimal number 0,1 to fraction \frac{1}{10}.
\frac{1\times 1}{3\times 10}\left(-\frac{1}{4}\right)\left(-12\right)
Multiply \frac{1}{3} times \frac{1}{10} by multiplying numerator times numerator and denominator times denominator.
\frac{1}{30}\left(-\frac{1}{4}\right)\left(-12\right)
Do the multiplications in the fraction \frac{1\times 1}{3\times 10}.
\frac{1\left(-1\right)}{30\times 4}\left(-12\right)
Multiply \frac{1}{30} times -\frac{1}{4} by multiplying numerator times numerator and denominator times denominator.
\frac{-1}{120}\left(-12\right)
Do the multiplications in the fraction \frac{1\left(-1\right)}{30\times 4}.
-\frac{1}{120}\left(-12\right)
Fraction \frac{-1}{120} can be rewritten as -\frac{1}{120} by extracting the negative sign.
\frac{-\left(-12\right)}{120}
Express -\frac{1}{120}\left(-12\right) as a single fraction.
\frac{12}{120}
Multiply -1 and -12 to get 12.
\frac{1}{10}
Reduce the fraction \frac{12}{120} to lowest terms by extracting and canceling out 12.
Examples
Quadratic equation
{ x } ^ { 2 } - 4 x - 5 = 0
Trigonometry
4 \sin \theta \cos \theta = 2 \sin \theta
Linear equation
y = 3x + 4
Arithmetic
699 * 533
Matrix
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
Simultaneous equation
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Differentiation
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Integration
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Limits
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}